
1

Explicit Analysis on Effectiveness and Hiddenness
of Moving Target Defense in AC Power Systems

Mengxiang Liu, Student Member, IEEE, Chengcheng Zhao, Member, IEEE, Zhenyong Zhang, Member, IEEE,
and Ruilong Deng, Senior Member, IEEE

Abstract—Moving target defense (MTD) is becoming promis-
ing in thwarting the false data injection attacks (FDIAs) on
power system state estimation (SE). However, due to the nonlinear
dynamics of AC power systems, the investigation of the general
evaluation metrics of MTD, namely the effectiveness in terms of
attack detection and the hiddenness, is still challenging. To this
end, in this paper, we attempt to conduct an explicit analysis
on the MTD performance in AC power systems. First, we derive
explicit approximations of measurement residuals to quantify the
two metrics. Then, based on the projection matrix, maximizing
the effectiveness is transformed to maximizing the lower bound
of the approximated residual, under which the matrix inverse
issue is addressed. Moreover, the maximization of hiddenness
is achieved by the minimization of the approximated power
flow difference caused by reactance perturbation. To balance
the trade-off between effectiveness and hiddenness, the design
of explicit residual-based MTD (EXR-MTD) is accomplished by
aggregating the two sub-problems with an appropriate weight.
Finally, extensive simulations are conducted to validate the
performance of EXR-MTD. Numerical results indicate that EXR-
MTD performs better than existing MTD strategies in terms of
hiddenness, while the effectiveness of EXR-MTD is comparable
to those of existing MTD strategies.

Index Terms—False data injection attack, hidden moving target
defense, AC power system, state estimation.

I. INTRODUCTION

With the deep integration of information and communica-
tions technology into power systems, the control center is able
to remotely monitor and control system’s operation statuses.
For the same reason, the power system is also suffering from
the threat of cyberattacks. Recently, two state-owned utility
companies in Brazil suffered separate ransomware attacks in
June 2020, where sensitive data was stolen and dumped online,
and some operations and services were forcibly shunt down
[1]. Moreover, in March 2020, a power outage and fluctuations
in supply across Venezuela knocked out approximately 35%
of the country’s telecommunications infrastructure, which was
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attributed to a cyberattack on the automatic control system
[2]. Hence, it is crucial to investigate the cybersecurity issue
in power systems.

Existing literature has revealed that once the attacker infers
certain knowledge of the topology and branch parameters of
the power system, and obtains the access to certain power
flow and power injection measurements, then the false data
injection attack (FDIA) against state estimation (SE) could be
launched without being perceived by the bad data detector
(BDD) [3]–[5]. A proactive defensive method named as mov-
ing target defense (MTD) has been recently proposed to thwart
FDIAs by perturbing either branch reactances [6] or control
gains in DC microgrids [7]. The basic idea behind MTD is
to make the previously inferred/obtained model knowledge
outdated, with which the constructed FDIA may be perceived.
In particular, the perturbation on branch reactances can be
achieved through the distributed flexible AC transmission
system (D-FACTS) devices, which are small and light enough
to be suspended from power lines [8].

There exist two general metrics that evaluate the perfor-
mance of MTD, i.e., the effectiveness in detecting the FDIA
and the hiddenness to deceive the attacker, which have been
comprehensively investigated in the simplified DC (linear)
model. Specifically, the effectiveness of MTD is quantified
as the rank of the composite matrix, which is composed
of the Jacobian matrices before and after MTD. The higher
rank means the stronger effectiveness. In [9], Zhang et al.
investigated the necessary condition for the complete MTD,
under which the composite matrix has full column rank,
and proposed algorithms to maximize the rank of composite
matrix when the complete MTD is not feasible. Li et al.
[10] systematically analyzed the feasibility and limitations of
MTD in detecting FDIAs from the perspective of the topology
constraints reflected by bus degrees. Liu et al. [11] proposed
the MTD strategy under which the effectiveness is maximized
and the branch power losses are minimized simultaneously.
Liu et al. [12] solved the optimal placement problem for
D-FACTS devices to maximize the effectiveness of MTD
when the number of D-FACTS devices is limited. Lakshmi-
narayana et al. [13] investigated the relationship between the
effectiveness of MTD and the associated cost, based on the
smallest principal angle of the Jacobian matrices before and
after MTD, which is comparable to the rank of the composite
matrix.

In addition to the effectiveness, the hiddenness of MTD
is also indispensable as the attacker can easily perceive the
implementation of MTD before launching FDIAs, by applying
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BDD to eavesdropped measurements [14], which is usually
adopted by the attacker to check the consistency between the
inferred model knowledge [15], [16] and the current system
model. According to [14], the enhanced hidden MTD can be
obtained by solving a set of linear equations such that the
power flows before and after MTD are invariant, named as
the power flow invariant (PFI) MTD. Zhang et al. proved that
the MTD can be hidden and completely effective regardless
of the changes of power flows, by protecting a basic set of
measurement points [17]. More recently, Liu et al. derived an
analytical sufficient condition for the placement of D-FACTS
devices utilizing topology analysis, based on which the DC
hidden MTD (DC-HMTD) and AC-HMTD are proposed to
maximize the effectiveness of MTD with the hiddenness being
guaranteed [18].

However, there still exist nontrivial gaps between the re-
duced DC model and the practical power system such as
the neglected series resistances and charging capacitances at
power lines. Hence, many efforts are also devoted to the design
of MTD in AC power systems. In [19], Liu et al. designed
a joint reactance perturbation and meter protection strategy
to improve the recoverability of system states under FDIAs.
Nevertheless, this method relies heavily on the assumptions
that only phase angles can be manipulated by attackers and
the change of conductance caused by reactance perturbation
is ignored, which are very similar to the assumptions made
for the DC model. Moreover, Cui et al. [20] proposed the
deeply hidden MTD in unbalanced distribution systems by
perturbing the self and mutual reactances of phases together.
Liu et al. [21] constructed a hidden MTD in the distribution
network reconfiguration by minimizing the AC power flow
difference before and after MTD. Nevertheless, there still lacks
an explicit analysis on the effectiveness and hiddenness of
MTD in AC power systems. Compared with the DC model,
there exist two basic difficulties that make the explicit analysis
in AC power systems challenging: (1) (Effectiveness) The
linearized Jacobian matrix cannot be decomposed as analyti-
cally as that in the DC model without ignoring the change of
conductance caused by reactance perturbation [19], and thus
it is difficult to explicitly analyze the composite matrix. (2)
(Hiddenness) The invariance of complex power flow before
and after MTD cannot be guaranteed by merely perturbing
reactances as practical power lines additionally have series
resistances and charging capacitances [14], and moreover an
explicit metric to quantify the hiddenness is yet missing.

Hence, in this paper, we develop two explicit and useful
metrics to quantify the effectiveness and hiddenness of MTD
in AC power systems based on the measurement residual,
which acts as the detection metric in BDD. With the explicit
metrics, we attempt to design the explicit residual-based MTD
(EXR-MTD) to optimize the two metrics. Different from our
previous work [22], we present an unified design method for
MTD in both power transmission and distribution systems, and
provide comprehensive validation results in standard test cases
and rigorous proofs for the derivation of explicit metrics. The
contributions of this paper are listed as follows:
• We derive explicit approximations of measurement resid-

uals to quantify the effectiveness and hiddenness of MTD

in AC power systems. Numerical results verify that the
approximations precisely capture the impact of reactance
perturbation and FDIAs on residuals.

• Based on the projection matrix, maximizing the effective-
ness is transformed to maximizing the lower bound of the
approximated residual, where the matrix inverse issue is
addressed. The maximization of hiddenness is achieved
by the minimization of the approximated power flow
difference caused by reactance perturbation. To balance
the trade-off between effectiveness and hiddenness, the
design of EXR-MTD is accomplished by aggregating the
two sub-problems with an appropriate weight.

• The EXR-MTD makes no assumption for the applied
power systems and thus it can be employed in both power
transmission and power distribution systems. Moreover,
we find that the EXR-MTD in power distribution system
cases has stronger effectiveness and hiddenness compared
with that in power transmission system cases, and more
performance metrics of EXR-MTD can be considered
in power distribution systems besides effectiveness and
hiddenness.

The remainder of this paper is organized as follows. Section
II introduces the system model. Section III quantifies the
effectiveness and hiddenness based on measurement residuals
and introduces our problems of interest. Section IV derives the
explicit approximations of measurement residuals and Section
V provides the design of EXR-MTD. Section VI shows the
simulation results and Section VII concludes this paper.

II. SYSTEM MODEL

In this section, we introduce the AC power system model,
SE model, BDD model, threat model and reactance pertur-
bation model. Throughout this paper, we utilize (~·) ∈ C to
denote the complex number and (·) ∈ R to indicate the real
number. Moreover, (~·)H signifies the conjugate, (·)T denotes
the transpose, and || · ||p represents the p-norm. The imaginary
unit of complex number is denoted by j. Inequalities between
vectors are compared by elements. The terms “bus” and
“node”, “branch” and “power line” are used interchangeably.

A. AC Power System Model

We focus on a symmetric and balanced power system, for
which a single-phase model is commonly utilized. The model
is composed of N nodes and L power lines. The set of nodes
is denoted by N , {0,NPV,NPQ}, where 0 signifies the
reference bus, NPV represents the set of PV buses, and NPQ

implies the set of PQ buses. The set of power lines is denoted
by L , {(j, k)}, and each branch (j, k) connects buses j and
k. The set of nodes connecting to node j ∈N is denoted by
Nj . In this paper, we only consider the steady states of the
power system, where all voltages are sinusoidal signals at the
same frequency. The voltage and current signals can therefore
be characterized as (~·) = |~·|ej∠~·, where |~·| is the root-mean-
square value of the signal and ∠~· is the phase angle with
respect to the reference bus.

The nodal voltages are taken to form the system state vector
x , [θNPV ;θNPQ ;VNPQ ] ∈ Rn, where vectors θNPV and θNPQ
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contain the phase angles of PV and PQ buses, respectively,
and vector VNPQ includes the voltage magnitudes of PQ buses.
Here n = 2(N −1)−NPV with NPV being the number of PV
buses. Once x is given, all power flow and power injection
measurements can be determined. We usually have m > n
measurements to ensure that the state vector is fully observable
from the meter measurements [23]. The mathematic relation
between the measurement vector z ∈ Rm and x is denoted by

z , h(x) + e. (1)

where vector h(·) contains the measurement functions and
vector e is composed of measurement noises following normal
distributions. We consider the standard π branch model as il-
lustrated in Fig. 1, where ~Zjk , Rjk+jXjk denotes the series
impedance and Bjk signifies the total charging susceptance.
The series admittance is denoted by ~Yjk , (~Zjk)−1.

Fig. 1: The π branch model.

In practice, the measurements received from remote ter-
minal units include active/reactive power flows, real/reactive
power injections, and voltage magnitudes, i.e., z ,
[z1; z2; z3]. Here, vector z1 , [P fwd

L ;Qfwd
L ;P rvs

L ;Qrvs
L ] con-

tains active and reactive power flows of branches L in
both forward and reverse directions; vector z2 , [PN;QN]
includes active and reactive power injections of buses N;
and vector z3 , VNPQ is composed of voltage magnitudes
of PQ buses NPQ. The measurement function of power flow
(j, k) ∈L is

hPjk(x) + jhQjk(x) , ~Vj

[
~Yjk(~Vj − ~Vk) + j

Bjk

2
~Vj

]H

.

The measurement function of power injection at bus j ∈N is

hPj (x) + jhQj (x) ,
∑
i∈Nj

~Vj

[
~Yji(~Vj − ~Vi) + j

Bji

2
~Vj

]H

.

The measurement function of voltage magnitude at bus j ∈
NPQ is

hVj (x) , |~Vj |.

For the large-scale power system with numerous measure-
ment points, it is impractical to telemeter all points through
real-time measuring devices such as phasor measurement
units, intelligent electronic devices, and advanced metering in-
frastructure systems [24], [25]. To guarantee the observability
from the measurements to the state vector, the pseudo mea-
surements produced by the control center through historical
customer load profiles, are usually utilized as the pseudo power
injection measurements [26].

B. SE Model

SE is to obtain the estimate of x, denoted by x∗, that is
the best fit of z following (1). The nonlinear weighted least
squares (NWLS) problem is usually formulated to find x∗

[27], i.e.,

x∗ , arg min
x
J(x) = arg min

x
rT(x)Wr(x), (2)

where r(x) , z−h(x) calculates the residual vector and the
diagonal weight matrix W , diag([δ−2

1 , · · · , δ−2
m ]) with δi

being the standard deviation of i-th measurement noise. The
common method to solve (2) is the iterative Gauss-Newton
method [28], which is based on a linear approximation to the
objective function. Specifically, for the i-th iteration at x =
x[i], when the step size ||∆[i]||2 is small, the Taylor expansion
of the residual function r(x[i] + ∆[i]) can be approximated as

r(x[i] + ∆[i]) = r(x[i])−Hx[i]
∆[i] +O(||∆[i]||22)

≈ l(∆[i]) , r(x[i])−Hx[i]
∆[i], (3)

where Hx[i]
denotes the Jacobian matrix of h(x) at x = x[i].

Substituting (3) into the objective function J(x), we obtain

J(x[i] + ∆[i]) ≈ L(∆[i]) ,
1

2
lT(∆[i])W l(∆[i])

=
1

2
J(x[i])−∆T

[i]H
T
x[i]
Wr(x[i]) +

1

2
∆T

[i]H
T
x[i]
WHx[i]

∆[i],

under which the gradient and Hessian of L(∆[i]) can be
calculated as

L
′
(∆[i]) = −HT

x[i]
Wr(x[i]) +HT

x[i]
WHx[i]

∆[i],

L
′′
(∆[i]) = HT

x[i]
WHx[i]

.

If matrix Hx[i]
is of full column rank, then L

′′
(∆[i]) will

be positive definite. This indicates that L(∆[i]) has a unique
minimizer (by solving L

′
(∆[i]) = 0)

∆[i] ,
[
HT

x[i]
WHx[i]

]−1

HT
x[i]
Wr(x[i]), (4)

which is utilized to update x[i] as

x[i+1] , x[i] + ∆[i].

The iteration is repeated until
∥∥∆[i]

∥∥
∞ and∣∣J (x[i+1]

)
− J

(
x[i]

)∣∣ are small enough [29]. Indeed,
the accuracy of the update rule (4) relies heavily on the
approximation error of the Taylor expansion (3). In particular,
the Taylor expansion will be more accurate if the step size
||∆[i]|| is smaller, which is mainly determined by the residual
vector r(x[i]) according to (4). This implies that if the initial
value x[0] is selected close to the optimal value, then the
accuracy of the update rule (4) will be increased and can
promote the convergence.

Due to stochastic meter failures and malicious cyber attacks,
there may exist bad data in numerous measurements. Based
on the result of SE, the system operator employs the residual-
based BDD to perceive bad data, and to identify and eliminate
it if possible [30]. In particular, the measurement residual is
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obtained by comparing the actual measurement z with the
estimated measurement ẑ, i.e.,

r , ||r(x∗)||2 = ||z − ẑ||2 = ||z − h(x∗)||2.

When measurement noises follow normal distributions, r2

will follow the chi-square distribution with (m− n) freedom,
i.e., χ2

m−n, in the normal case. Through the hypothesis test,
a predetermined threshold τ can be given with a significance
level α [30]. If the residual r is larger than τ , i.e., r > τ , then
an abnormal alarm will be triggered by the BDD, whose false
alarm rate is equal to the significance level; otherwise, z is
taken as normal and the hypothesis is accepted.

C. Threat Model

In this paper, we consider the worst case where the attacker
has the following capabilities:
• The attacker can eavesdrop and tamper with measure-

ments through spoofed communication signals, intruded
shared communications, or spoofed field devices [31].

• The attacker can infer the network topology and branch
parameters of power system through topology leaking at-
tacks [15] and subspace attacks [16], respectively, which
typically requires the order of a few hours.

• The attacker can approximate the system state vector
based on power flow or power injection measurements
without too many efforts as shown in [4].

With the above capabilities, the attacker is able to launch
the FDIA that can bypass the BDD. The adopted actions
are summarized as follows: 1) inferring the measurement
function h(·); 2) approximating the system state x∗ as xappr;
3) constructing the attack vector as

a , h(xappr + c)− h(xappr), (5)

where c ∈ Rn denotes the bias vector that the attacker intends
to inject into the state vector; 4) tampering with z using a.
In the absence of MTD, it is evident that the measurement
residual under the FDIA is

ra , ||z + a− h(x∗a)||2
= ||z + h(xappr + c)− h(xappr)− h(x∗a)||2
≈ ||z − h(xappr)||2 ≈ ||z − h(x∗)||2 ≈ r.

due to the facts that xappr ≈ x∗ and x∗a ≈ x∗+ c ≈ xappr + c,
where x∗a denotes the estimated state vector under the FDIA.
The falsified system states by the FDIA can make the system
operator unconscious of the current system states, and thus
will invalidate the application functions after SE such as the
contingency analysis, emergency control, restorative control,
and load forecasting [30], which may cause catastrophic
failures to the power system.

D. Reactance Perturbation Model

For branch (j, k) ∈L equipped with the D-FACTS device,
the reactance can be arbitrarily perturbed within

Xjk + ∆Xjk ≤ XMTD
jk ≤ Xjk + ∆Xjk, (6)

Timeline

MTD Implemented
by system operator

Hiddenness metric 
by attacker
FDIA launched by 
attacker

Effectiveness metric 
by system operator

𝑡𝑡0 𝑡𝑡1 𝑡𝑡2

Fig. 2: Graphical illustration for the sequence of actions adopted by
the attacker and the system operator, where t0 ≤ t1 ≤ t2.

where XMTD
jk denotes the branch reactance after MTD, and

∆Xjk and ∆Xjk signify the lower and upper bounds for
the perturbation command ∆Xjk, respectively. Let vector b
contain parameters Rjk, Xjk, and Bjk of all branches, and let
vector ∆b contain the perturbation commands. We have

∆b ≤ ∆b ≤ ∆b, (7)

where the elements in ∆b and ∆b are set as zeros when the el-
ements correspond to series resistances, charging susceptances,
or the branches equipped with no D-FACTS device. To defend
against the FDIA, the system operator in the control center
will command the remote D-FACTS devices to proactively
perturb the branch reactances such that the previously inferred
h(·) can be antiquated. Here, the perturbation commands are
transmitted through encrypted secure channels to guarantee the
confidentiality and integrity. Since the attacker requires several
hours to complete the inference process for the network topol-
ogy and branch parameters (i.e., h(·)) [16], the perturbation
commands should be updated quickly than that (e.g., hourly)
to invalidate the inference process.

III. PROBLEM STATEMENT

In this section, we quantify the effectiveness and hiddenness
of MTD based on measurement residuals and introduce our
problems of interest. With some abuse of notations, we use
symbols without subscript such as h(·),x, b, z to denote the
quantities before MTD, and symbols with subscript (·)MTD to
signify those after MTD. For clarity, we provide a graphical
illustration in Fig. 2 for the sequence of actions adopted by
the attacker and the system operator.

A. The Hiddenness of MTD

Before launching FDIAs, the attacker will apply BDD to
eavesdropped measurements to judge the consistency between
the inferred model knowledge and the current system model.
Here, we consider the worst case where the attacker can obtain
the same measurements as the system operator, i.e., zMTD, to
evaluate the hiddenness of MTD. The estimated system state
is obtained by solving

x∗att , arg min
x
Jatt(x) = arg min

x
rT

att(x)Wratt(x),

where ratt(x) , zMTD − h(x). We note that the power flow
and voltage magnitude measurements of zMTD can be different
from those of z. The hiddenness of MTD is quantified as

ratt , ‖ratt(x
∗
att)‖2 . (8)
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Due to the inconsistency between h(·) and hMTD(·), zMTD
may not be totally explained by h(·) in the absence of
measurement noises, i.e., it may be difficult to find a x
such that h(x) approaches zMTD infinitely. Hence, ratt would
be nontrivial if the perturbation commands are not properly
designed. From the point view of the attacker, the smaller ratt
means the stronger hiddenness. Only if the MTD strategy is
hidden from the attacker, then the FDIA will be launched.
Otherwise, the attacker will restart the inference process, and
the FDIA will not be launched.

B. The Effectiveness of MTD

In the presence of MTD, the corrupted measurement vector
is zaMTD = zMTD + aMTD, where the construction of attack
vector aMTD = h(xappr

MTD+c)−h(xappr
MTD) is similar to (5). Here,

xappr
MTD denotes the attacker’s approximation of the estimated

state vector by the system operator after MTD, i.e., x∗MTD,
such that hMTD(x∗MTD) = zMTD ≈ hMTD(xappr

MTD).1 Due to
the inconsistency between h(·) and hMTD(·) caused by MTD,
zaMTD would deviate from the expected vector hMTD(xappr

MTD+c).
Thus, it may be difficult to find a x such that hMTD(x)
approaches zaMTD infinitely in the absence of measurement
noises, i.e., zaMTD may not be totally explained by the output
of hMTD(·), under which the FDIA may be detected by the
BDD. Specifically, the estimated state vector is obtained by
solving

x∗sys , arg min
x
Jsys(x) = arg min

x
rT

sys(x)Wrsys(x),

where rsys(x) , zaMTD−hMTD(x). The effectiveness of MTD
is quantified as

rsys ,
∥∥rsys(x

∗
sys)
∥∥

2
. (9)

Obviously, rsys needs to be large enough to expose the
FDIA to BDD, and thus the larger rsys means the stronger
effectiveness.

C. Problems of Interest

In this paper, based on ratt and rsys, we attempt to conduct
an explicit analysis on the effectiveness and hiddenness and
design EXR-MTD in AC power systems. We focus on the
noiseless case where the residual is deterministic once the re-
actance perturbation and the FDIA are known, and simulations
are conducted to validate the applicability of the proposed
approach in the presence of measurement noises. Here the
challenges lie in the implicit expressions of rsys and ratt and the
nontrivial trade-off between effectiveness and hiddenness [9].
Hence, our problems of interest include: 1) deriving explicit
approximations for rsys and ratt; 2) designing EXR-MTD such
that rsys is maximized and small ratt can be guaranteed.

1The impact of the reactance perturbation on the attacker’s approximation
of the estimated state vector is not considered.

IV. APPROXIMATIONS OF MEASUREMENT RESIDUALS

In this section, we derive explicit approximations for ratt and
rsys based on the sensitivity analysis, which discusses “how”
and “how much” variations in the parameters of an optimiza-
tion problem will change the optimal objective function value
and the optimal solution [32]. Moreover, the accuracy of the
derived approximations is validated through numerical results.

A. Sensitivity Analysis to the NWLS Problem

In this subsection, we apply sensitivity analysis to the
general NWLS problem (2) and derive two essential sensi-
tivities, with which ratt and rsys can be approximated in a
real-time manner. For brevity, let Θ∗ , (x∗, z, b) denote the
aggregated local optimal point. The first-order Karush-Kuhn-
Tucker (KKT) condition for solving the NWLS problem (2)
is established as

∇xJ(Θ∗) = 0. (10)

The sensitivity is obtained by perturbing the system state
x∗ and corresponding parameters z, b around Θ∗ such that
the KKT condition (10) still holds. Hence, by differentiating
(2) and (10), we have

[
JT
x JT

z JT
b −1

Jxx Jxz Jxb 0

]
dx
dz
db
dJ

 = 0, (11)

where

Jx , ∇xJ(Θ∗), Jz , ∇zJ(Θ∗), Jb , ∇bJ(Θ∗),

Jxx , ∇xxJ(Θ∗), Jxz , ∇xzJ(Θ∗), Jxb , ∇xbJ(Θ∗).

Proposition 1: When the objective function value J(Θ∗) ap-
proaches zero infinitely, the sensitivities ∂x

∂b and ∂r
∂z at point

Θ∗ are obtained as

∂x

∂b
|Θ∗ , −

[
(H∗x)TH∗x

]−1
(H∗x)TH∗b , (12)

∂r

∂z
|Θ∗ , I −H∗x

[
(H∗x)TH∗x

]−1
(H∗x)T, (13)

where H∗x denotes the Jacobian matrix at x = x∗ and H∗b ,
∂h(x∗)/∂b.

Proof: The proof can be found in Appendix A.

It is noted that J(Θ∗) can approach zero infinitely in
the absence of measurement noises, and thus (12) and (13)
are directly adopted hereafter. Moreover, the correctness of
the derived sensitivities can be easily verified by lineariz-
ing the nonlinear measurement function (1) around x∗ as
∆z , z − z∗ = H∗x(x − x∗) + e = H∗x∆x + e, and
then according to the simplified DC model the alteration of
residual ∆r = ∆z − H∗x∆x̂ can be calculated as ∆r ,[
I −H∗x

[
(H∗x)TH∗x

]−1
(H∗x)T

]
∆z, i.e., (13).



6

B. Approximations of Measurement Residuals

In this subsection, based on (12) and (13), explicit approx-
imations of ratt and rsys are derived.

1) Approximation of ratt: According to (8), the nontrivial
ratt is caused by the measurement variations before and after
MTD, i.e., ∆zatt , hMTD(x∗MTD) − h(x∗), where x∗MTD de-
notes the solution to (2) with measurement zMTD and measure-
ment function hMTD(·). Hence, via (13), ratt is approximated
around Θ∗ as

ratt ≈
∥∥∥∥∂r∂z |Θ∗ ×∆zatt

∥∥∥∥
2

. (14)

Here, the computation of precise ∆zatt requires to requires
to solve the AC power flow problem [33], which is typically
based on the iterative Newton-Raphson method and is time-
consuming. We choose to approximate ∆zatt utilizing ∆b and
∆x∗ , x∗MTD − x∗, i.e.,

∆zatt ≈ H∗b∆b+H∗x∆x∗

≈ ∆zappr
att ,

(
H∗b +H∗x ×

∂x

∂b
|Θ∗
)

∆b. (15)

Integrating (14) with (15), we obtain the explicit approxi-
mation of ratt as

ratt ≈ rappr
att ,

∥∥∆zappr
att

∥∥
2
, (16)

which implies that the quantified metric for hiddenness is
equivalent to the approximated power flow variations before
and after MTD, which matches the PFI condition for the
hidden MTD in the DC model [14].

2) Approximation of rsys: In the presence of MTD, the solu-
tion to (2) with measurement zaMTD and measurement function
hMTD(·) may slightly deviate from x∗MTD + c due to the bias
∆zsys , zaMTD−hMTD(x∗MTD +c), which can result in nontriv-
ial rsys. Hence, rsys is approximated around the shifted local
optimal point Θ∗MTDa ,

(
x∗MTD + c,hMTD(x∗MTD + c), bMTD

)
by the attacker as

rsys ≈
∥∥∥∥∂r∂z |Θ∗MTDa

×∆zsys

∥∥∥∥
2

, (17)

where ∆zsys is expanded as

∆zsys = zMTD + aMTD − hMTD(x∗MTD + c)

≈ −hMTD(x∗MTD + c) + h(x∗MTD + c)+

+ hMTD(x∗MTD)− h(x∗MTD), (18)

owing to the fact that x∗MTD can be accurately approximated by
the attacker as xappr

MTD without too many efforts [4]. According
to (18), there exist two directions for the further approximation
of ∆zsys, i.e., utilizing the reactance perturbation ∆b or the
induced state bias c. Specifically, based on ∆b, we have

∆zsys ≈ ∆zapprb
sys , (HMTD∗

b −HMTDc∗
b )×∆b, (19)

where

HMTD∗
b ,

∂h(x∗MTD)

∂b
, HMTDc∗

b ,
∂h(x∗MTD + c)

∂b
.

Based on c, we have

∆zsys ≈ ∆zapprx
sys , (H∗xMTD

−HMTD∗
xMTD

)× c, (20)

where

H∗xMTD
,
∂h(x∗MTD)

∂x
, HMTD∗

xMTD
,
∂hMTD(x∗MTD)

∂x
.

Substituting (19)-(20) into (17), the two explicit approxima-
tions of rsys are obtained as

rsys ≈ rapprb
sys ,

∥∥(I − PMTD∗
xMTDc

)×∆zapprb
sys

∥∥
2
, (21)

and

rsys ≈ rapprx
sys ,

∥∥(I − PMTD∗
xMTDc

)×∆zapprx
sys

∥∥
2
, (22)

respectively, where

PMTD∗
xMTDc

, HMTD∗
xMTDc

[
(HMTD∗

xMTDc
)THMTD∗

xMTDc

]−1
(HMTD∗

xMTDc
)T (23)

and HMTD∗
xMTDc

, ∂hMTD(x∗MTD + c)/∂x. We note that the
approximation x∗MTD ≈ x∗ + ∂x

∂b |Θ∗ × ∆b is adopted to
guarantee the real-time property when calculating (21)-(23).

Remark 1: To guarantee the approximation accuracy, we
adopt the sensitivities derived around two optimal points to ap-
proximate ratt and rsys. In particular, the approximation of ratt
is based on the sensitivities derived around the original optimal
point Θ∗ = (x∗, z, b), while the approximation of rsys is based
on the sensitivities derived around the shifted optimal point
by the attacker Θ∗MTDa =

(
x∗MTD +c,hMTD(x∗MTD +c), bMTD

)
.

In practice, the injected bias vector c is not available to the
system operator. Nevertheless, it will not affect the design of
EXR-MTD with the derived sensitivities, as the elements in c
merely act as the vulnerability factors of system states and do
not have to be the true state biases injected by the attacker.
Generally speaking, when designing EXR-MTD, the value of
vector c is assigned in advance by the system operator. If the
absolute value of the i-th element in c is significantly larger
than others, then the designed EXR-MTD will make the FDIA
targeting at the i-th state more perceivable to the BDD.

C. Numerical Results

In this subsection, we provide numerical results to validate
the accuracy of derived approximations rappr

att , rapprb
sys , and rapprx

sys .
Let the set Lp include all branches that cover at least one PQ
bus. In each scenario, we perturb one branch (j, k) ∈ Lp

with the perturbation magnitude ratio ∆b
b ranging from 2% to

20% with step 2%, under which ratt and rappr
att are calculated.

After introducing the FDIA against one PQ bus covered
by (j, k), where the induced voltage magnitude bias varies
from 0.01p.u. to 0.1p.u., rsys, r

apprb
sys , and rapprx

sys are computed.
We first show the results in the noiseless setting and then
introduce the measurement noises with standard deviations
δi = 5%,∀1 ≤ i ≤ m to evaluate their impact. Due
to the space limitation, we merely visualize the details of
residuals in IEEE 14-bus (transmission system) and radial 18-
bus (distribution system) cases with δi = 0, where 18 × 10
and 17× 10 scenarios are depicted, respectively. More details
about the results under δi = 5% can be found in Appendix
C. According to Fig. 3 and Fig. 4, the approximation errors
increase with the growth of ∆b or c, which is an intuitive
phenomenon as the sensitivities are obtained around either Θ∗
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or Θ∗MTDa. Specifically, for the residual by the attacker, rappr
att

is very close to ratt especially in the radial 18-bus case. For
the residual by the system operator, rapprx

sys has higher accuracy
than rapprb

sys in the IEEE 14-bus case as ||∆b||2 is generally
larger than ||c||2. Differently, rapprb

sys performs better than rapprx
sys

in the radial 18-bus case due to the small branch ratios X/R.
Finally, the essential trade-off between ratt and rsys can be
qualitatively deduced from the results. Roughly speaking, the
higher rsys usually leads to the comparable ratt, indicating
that the effectiveness and hiddenness of MTD are hard to be
satisfied simultaneously without a systematic design method.

Furthermore, the average and maximum relative approx-
imation errors (RAEs) under δi = 0 and δi = 5% are
shown in TABLE I and TABLE II, respectively, to validate
the applicability to numerous test cases. To make the results
meaningful, the metrics are counted by excluding the residuals
smaller than 0.01p.u., which are indistinguishable from the
impact of measurement noises. From the results, the average
RAEs of rappr

att and rapprx
sys are within 6% and 4%, respectively,

in transmission system test cases. Moreover, in radial 69-bus
and 141-bus cases, ratt and rappr

att are both smaller than 0.01p.u.,
indicating that the impact of reactance perturbation is
neglectable. It is noted that the RAEs of rapprb

sys and rapprx
sys show

similar characteristics as those reflected by Fig. 3 and Fig. 4.
Hence, we will utilize rappr

att , rapprx
sys for the design of EXR-

MTD in power transmission systems and rappr
att , rapprb

sys for
that in power distribution systems.

As for the impact of measurement noises, it is clearly
revealed that all RAEs increase as the introduction of measure-
ment noises. The average RAEs are still within the acceptable
range (smaller than 25%), while the maximum RAEs can
be extremely large. Specifically, the approximation accuracy
of rappr

att is almost not affected by measurement noises in
the IEEE 14-bus case as the impact of measurement noises
on the residual is far smaller than that of the reactance
perturbation. While in the radial 18-bus case the accuracy
decreases significantly as the impact of measurement noises
on the residual is comparable to or larger than that of the
reactance perturbation. This phenomenon is due to that the
branch ratio X/R in the IEEE 14-bus case is far larger than
that in the radial 18-bus case. The approximation accuracy
of rapprb

sys and rapprx
sys are not significantly affected no matter

in the IEEE 14-bus case or in the radial 18-bus case as the
impact of measurement noises on the residual is far smaller
than that of the FDIA and reactance perturbation. Furthermore,
from the point view of effectiveness and hiddenness, the
impact of measurement noises is beneficial to the hiddenness
of MTD, as it can cover the impact caused by reactance
perturbation. While measurement noises have a detrimental
impact on the effectiveness of MTD, since it may prevent the
FDIA from being detected by BDD. In summary, we assert
that the approximations rappr

att , rapprb
sys , and rapprx

sys exactly
capture the impact of reactance perturbation and FDIAs
on residuals. Moreover, from the above studies on the
two representative cases, we can infer that measurement
noises can almost guarantee the hiddenness of MTD in
power distribution systems, while the hiddenness in power

transmission systems and the effectiveness of MTD are
almost not affected by measurement noises. Although the
impact of measurement noises on the approximated residuals
has been illustrated through numerical results, it is still vital
to reveal the theoretical relations between measurement noises
and the approximated residuals, which is left as the future
work.

TABLE I: Average and Maximum RAEs, δi = 0

Test cases
Metrics |rappr

att − ratt|/ratt |rapprb
sys −rsys|/rsys |rapprx

sys −rsys|/rsys

Avg. Max. Avg. Max. Avg. Max.

IEEE 14-bus 5.58% 14.54% 8.85% 16.74% 2.30% 4.88%
IEEE 57-bus 4.77% 13.02% 9.52% 22.70% 3.42% 27.94%
IEEE 118-bus 4.84% 16.81% 8.99% 18.14% 1.98% 9.09%
IEEE 300-bus 4.49% 44.77% 9.77% 31.24% 1.87% 31.59%

Radial 18-bus 0 0 15.75% 29.11% 35.47% 70.84%
Radial 69-bus a 7.99% 28.55% 38.08% 78.17%
Radial 85-bus 0.72% 0.76% 3.83% 12.69% 25.96% 80.07%
Radial 141-bus 6.75% 22.39% 14.02% 77.93%

a Residuals are smaller than 0.01p.u.

TABLE II: Average and Maximum RAEs, δi = 5%

Test cases
Metrics |rappr

att − ratt|/ratt |rapprb
sys −rsys|/rsys |rapprx

sys −rsys|/rsys

Avg. Max. Avg. Max. Avg. Max.

IEEE 14-bus 5.53% 19.21% 10.12% 22.13% 3.88% 19.84%
IEEE 57-bus 22.82% 97.31% 18.31% 71.80% 12.93% 81.39%
IEEE 118-bus 25.93% 99.75% 12.25% 93.83% 5.69% 99.32%
IEEE 300-bus 29.96% 99.99% 29.37% 99.96% 23.56% 99.99%

Radial 18-bus 16.12% 25.54% 20.18% 31.73% 27.94% 72.23%
Radial 69-bus 12.28% 30.37% 37.68% 88.17%
Radial 85-bus 48.28% 52.07% 10.25% 54.26% 31.15% 85.04%
Radial 141-bus 12.59% 62.26% 18.29% 87.93%

V. EXR-MTD

In this section, based on the explicit approximations (16),
(21)-(22), we propose EXR-MTD to jointly optimize the
effectiveness and hiddenness. Essentially, the design of EXR-
MTD can be decomposed as the following two sub-problems:

max
bMTD

(rapprx
sys )2 or (rapprb

sys )2 Sub-Problem I1 (24)

and

min
bMTD

(rappr
att )2, Sub-Problem II (25)

where (24) and (25) represent the maximization of effective-
ness and hiddenness, respectively. Here the main challenge
lies in the matrix inverse issue involved in rapprx

sys and rapprb
sys ,

which can significantly enlarge the computation complexity of
sub-problem I and even make the (local) optimum unavailable.
Hence, we first make some transformations for sub-problem I
to address the matrix inverse issue, after which the two sub-
problems are aggregated together by multiplying an appropri-
ate weight.

1(r
apprx
sys )2 is utilized for power transmission systems and (r

apprb
sys )2 is for

power distribution systems.
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(a) ratt and rappr
att (b) rsys and rapprb

sys (c) rsys and rapprx
sys

Fig. 3: This figure visualizes the actual residuals ratt and rsys and the approximated residuals rappr
att , rapprb

sys , and rapprx
sys when perturbing different

branches in the IEEE 14-bus case (transmission system) with δi = 0.

(a) ratt and rappr
att (b) rsys and rapprb

sys (c) rsys and rapprx
sys

Fig. 4: This figure visualizes the actual residuals ratt and rsys and the approximated residuals rappr
att , rapprb

sys , and rapprx
sys when perturbing different

branches in the radial 18-bus case (distribution system) with δi = 0.

A. Transformations of Sub-Problem I
To address the matrix inverse issue in sub-problem I, we

deeply investigate the physical meaning behind matrix I −
PMTD∗
xMTDc

, which is named as the projection matrix in the field of
linear regression [34] as it orthogonally projects vectors onto
the subspace R⊥x that is orthogonal to the image of HMTD∗

xMTDc
.

For convenience, the approximation of ∆zsys is omitted, under
which (24) can be uniformly described by

max
bMTD

∥∥(I − PMTD∗
xMTDc

)×∆zsys
∥∥2

2︸ ︷︷ ︸
a2

(26)

m

max
bMTD

‖∆zsys‖22︸ ︷︷ ︸
c2

−
∥∥PMTD∗

xMTDc
×∆zsys

∥∥2

2︸ ︷︷ ︸
b2

, (27)

where (27) is an equivalent formation of (26) and the equiv-
alence can be graphically interpreted via a right triangle. Let
(HMTD∗

xMTDc
)⊥ ∈ Rm×(m−n) be a full column rank matrix and

satisfy (HMTD∗
xMTDc

)T(HMTD∗
xMTDc

)⊥ = 0. Then, the column vectors
of matrices HMTD∗

xMTDc
and (HMTD∗

xMTDc
)⊥ constitute a basis for the

m-dimensional vector space. For any vector ∆zsys ∈ Rm,
there exist h1 ∈ Rn and h2 ∈ Rm−n such that ∆zsys =
HMTD∗

xMTDc
×h1 + (HMTD∗

xMTDc
)⊥ ×h2, whose orthogonal projection

onto image of HMTD∗
xMTDc

is captured with

PMTD∗
xMTDc

×∆zsys = HMTD∗
xMTDc

× h1. (28)

Hence, the three variables a, b, and c can be regarded as the
three sides of a right triangle, where a and b are the two sides

Fig. 5: Graphical illustration of the equivalence (26) ⇔ (27).

adjacent to the right angle and c denotes the hypotenuse. The
equivalence of (26) ⇔ (27) is vividly demonstrated in Fig. 5.

Proposition 2 is established to avert the matrix inverse issue
involved in (27), where maximizing −b2 is transformed to
maximizing the lower bound.

Proposition 2: Based on matrix norm inequalities, maximiz-
ing (27) is transformed to maximizing the lower bound, i.e.,

max
bMTD

‖∆zsys‖22 −
∥∥(HMTD∗

xMTDc
)T ×∆zsys

∥∥2

2(
σmin(HMTD∗

xMTDc
)
)2 , (29)

where σmin(·) denotes the minimal singular value function.

Proof: The proof can be found in Appendix B.

Remark 2: Due to the existence of σmin(·), it is still challeng-
ing to directly solve (29). Fortunately, through numerical simu-
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lations, we observe that the impact of reactance perturbation on(
σmin(HMTD∗

xMTDc
)
)2

is neglectable, which may be further utilized
to simplify (29). We simulate all scenarios where the reactance
of one branch is perturbed with ratio 20%, and the average
and maximum relative alterations of

(
σmin(HMTD∗

xMTDc
)
)2

under 8
test cases are presented in TABLE III. The average relative
alterations are all 0, and the maximum relative alterations
are within 3%. Hence, we consider that it is feasible to treat(
σmin(HMTD∗

xMTDc
)
)2

as constant in the presence of MTD when
the perturbation magnitude ratio is bounded by 20% and (29)
is simplified as

max
bMTD

‖∆zsys‖22 −
∥∥(HMTD∗

xMTDc
)T ×∆zsys

∥∥2

2(
σmin(H∗xc

)
)2 , (30)

where H∗xc
, ∂h(x∗ + c)/∂x.

TABLE III: Average and Maximum Relative Alterations on σmin
a

Test cases
Metrics ∆σmin

b/σmin,0
c

Test cases
Metrics ∆σmin/σmin,0

Avg. Max. Avg. Max.

IEEE 14-bus 0d 0.09% Radial 18-bus 0 0.64%
IEEE 57-bus 0 0 Radial 69-bus 0 0.09%
IEEE 118-bus 0 0.09% Radial 85-bus 0 0.08%
IEEE 300-bus 0 2.33% Radial 141-bus 0 0.12%

a
(
σmin(HMTD∗

xMTDc
)
)2 is written as σmin for brevity.

b ∆σmin denotes the absolute alteration on σmin caused by MTD.
c σmin,0 denotes the σmin in the absence of MTD.
d The value is considered to be 0 if it is smaller than 0.0001.

B. Aggregation of Sub-problems

By aggregating sub-problems (25) and (30), we obtain

min
bMTD
− ‖∆zsys‖22 +

∥∥(HMTD∗
xMTDc

)T ×∆zsys
∥∥2

2(
σmin(H∗xc

)
)2 + watt ×

∥∥∆zappr
att

∥∥2

2

s.t. b+ ∆b ≤ bMTD ≤ b+ ∆b, (31)

where watt ≥ 1 is the weight parameter that should be
appropriately chosen to maximize the effectiveness of MTD
while guaranteeing the hiddenness [18]. Specifically, a larger
watt leads to the designed EXR-MTD possessing stronger
hiddenness, and a smaller watt results in the opposite result.

After substituting (19) and (20) into (31), the nonlinear and
non-convex optimization problems can be obtained for power
distribution and power transmission systems, respectively,
which can be treated as the polynomial optimization problems
(POPs) and are NP-hard. It is difficult to find the global
optimums of the formulated PoPs, and further efforts are
still required to develop approximation algorithms to approach
them [35], which is left as the future work. In this study, we
use the standard fmincon solver from Matlab equipped with
the interior-point algorithm to solve the PoPs, where different
local minimums could be found when started from different
initial points. Since the larger perturbation magnitude usually
makes the MTD possess stronger effectiveness, we consider
the two boundary points, i.e., b + ∆b and b + ∆b, as initial
points, under which two (local) minimums can be obtained
and the one with better performance is chosen as the output.

Finally, we note that the EXR-MTD is dedicated to en-
hancing the cybersecurity of SE against FDIAs based on the
D-FACTS devices that have been installed to branches for
the power flow regulation. While the installation of extra D-
FACTS devices is not necessary for the implementation of
EXR-MTD.

VI. SIMULATION RESULTS

In this section, we conduct extensive simulations on the
test cases extracted from MATPOWER to evaluate the per-
formance of EXR-MTD. The standard deviations of real-time
measurement noises are considered to be 1% for phasor and
magnitude measurements. The pseudo measurement noises are
considered to possess 10% standard deviations. The pertur-
bation magnitude ratios are bounded by 20%, under which
the power loss variations would be restricted within 1% in
a sufficiently large number of perturbation cases [9]. When
solving problem (31), the weight parameter watt is set as 100
for power transmission systems and 1 for power distribution
systems, and moreover all elements of vector c are set as 0.1.
The significance level α utilized in BDD is set as 0.05. For
the purpose of practicality, we assume that both the attacker
and the system operator adopt the AC power flow model.

A. Performance in Power Transmission Systems

In this subsection, we compare the performance of EXR-
MTD with that of PFI-MTD [14], DC-HMTD [18], and AC-
HMTD [18]. In particular, the PFI-MTD is to make the
power flow invariant in the simplified DC model, and the
DC-HMTD and AC-HMTD are to optimize the effectiveness
and hiddenness of MTD based on the DC and AC models,
respectively.

1) EXR-MTD and PFI-MTD: The PFI-MTD is imple-
mented with the perturbation magnitude ratio of at least one
branch reaching 0.2 or −0.2 to maximize the effectiveness.
First, when all branches can be perturbed, we depict residuals
under EXR-MTD and PFI-MTD, and consider 100 scenarios.
In each scenario, we sample each element of c from a uniform
distribution U(−dm, dm) with dm = 0.1 being the maximum
magnitude of the injected biases into state variables. As shown
in (a)-(b) of Fig. 6, compared with PFI-MTD, EXR-MTD can
lead to the smaller ratt, and moreover under more than 90%
scenarios, the larger rsys is induced. Then, we consider the case
where only partial branches can be perturbed. According to
[14], the number of perturbed branches ranges from 5 to 20 in
the IEEE 14-bus case. For each setting, 1000 attacks generated
from U(−0.1, 0.1) are launched, and based on Monte Carlo
simulations, the attack detection probability is estimated as
Num. of detected FDIAs

1000 . Besides, 100 PFI-MTD strategies are
randomly selected for each number of perturbed branches,
and 100 EXR-MTD strategies are correspondingly designed
with the same sets of perturbed branches. As illustrated in
(c) of Fig. 6, the attack detection probability becomes higher
as the number of perturbed branches increases, and EXR-
MTD generally performs better than PFI-MTD in detecting
FDI attacks. Additionally, it is observed that PFI-MTD is
difficult to maintain hiddenness when the attacker uses the
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AC power flow model, as the induced ratt is significantly larger
than that without MTD. On the contrary, EXR-MTD has the
evident advantage in preserving hiddenness since the incurred
ratt is close to that without MTD. From the above results, it
is asserted that EXR-MTD comprehensively performs better
than PFI-MTD when the practical AC power flow model is
adopted, despite the utilization of approximated residuals.

(a) IEEE 14-bus (b) IEEE 57-bus

(c) IEEE 14-bus

Fig. 6: This figure shows the comparison results between EXR-
MTD and PFI-MTD [14] in transmission systems, where (a) and (b)
depict the true residuals when all branches can be perturbed, and (c)
shows the effectiveness and hiddenness of MTD when the number
of perturbed branches increases.

2) EXR-MTD, DC-HMTD, and AC-HMTD: Based on the
HMTD planning solutions in IEEE 14-bus and 57-bus cases
[18], we solve the optimization problems formulated for
EXR-MTD, DC-HMTD, and AC-HMTD and compare the
effectiveness and hiddenness of obtained MTD strategies. In
particular, the optimization problems are all solved by the
standard fmincon function from Matlab equipped with the
interior-point algorithm, in which the bound of perturbation
magnitude ratio varies from 2% to 20%. Moreover, when
solving the optimization problems, the initial points are chosen
from the two boundary points, i.e., b + ∆b and b + ∆b.
The results indicate that the effectiveness increases with the
growth of the perturbation bound, while the hiddenness con-
tinuously decreases. Specifically, the effectiveness of EXR-
MTD is slightly weaker than those of DC-HMTD and AC-
HMTD when the perturbation bound is smaller than 12.5%,
and the attack detection probabilities can all reach 1 if the
perturbation bound exceeds 12.5%. Moreover, the hiddenness
of EXR-MTD is always stronger than those of DC-HMTD
and AC-HMTD. The computation time of solving the three
optimization problems in a core i9 computer, which has a
3.6GHz CPU and 32.0G memory, is listed in TABLE IV. In
each test case, the problem is solved 100 times, and the average
and maximum computation time is demonstrated. It is shown
that the computation time of EXR-MTD is longer than that of
DC-HMTD and is shorter than that of AC-HMTD.

TABLE IV: Computation Time [s]

Test cases
Metrics DC-HMTD AC-HMTD EXR-HMTD

Avg. Max. Avg. Max. Avg. Max.

IEEE 14-bus 0.0260 0.0322 0.8723 1.0983 0.4233 0.5280
IEEE 57-bus 0.2691 0.6282 9.9994 10.205 6.9812 8.0752

Remark 3: Compared with DC-HMTD, the design of EXR-
MTD considers the existence of series resistances and charging
capacitances at power lines, and adopts sensitivity analysis
to linearly approximate the ACPF model and obtain the ap-
proximated measurement residuals. Indeed, the approximation
error increases with the growth of the perturbation magnitude.
Nevertheless, in IEEE 14-bus and 57-bus cases, the average
branch ratios R/X are 39.83% and 33.90%, respectively,
which are both larger than the maximal perturbation magnitude
ratio on branch reactances, i.e., 20%. Intuitively, although
the accuracy of the approximated PF model decreases as the
increase of the perturbation magnitude, the induced distortions
are always smaller than those caused by the neglected branch
resistances as in the DCPF model. Hence, the hiddenness of
EXR-MTD can be stronger than that of DC-HMTD, and the
stronger hiddenness will restrain the perturbation magnitude,
under which the effectiveness of EXR-MTD can be slightly
weaker than that of DC-HMTD when the perturbation bound
is smaller than 12.5%. Once the perturbation bound exceeds
12.5%, the induced residuals will both trigger the attack alarm,
and the attack detection probabilities are equal to 1.

Remark 4: Moreover, since the AC-HMTD directly mini-
mizes the ACPF variations caused by reactance perturbation,
more decision variables such as the voltage magnitudes and
angles after reactance perturbation are included in the formu-
lated optimization problem. Given a non-convex optimization
problem and the solver, the selection of the initial values
of decision variables determines how good the attained local
minimum is. The increase of the number of decision variables
would make the selection of a good initial point more difficult
and time-consuming. Thus, when using the voltage magnitudes
and angles without reactance perturbation as initial values and
adopting the standard solver fmincon from Matlab equipped
with the interior-point algorithm, the hiddenness of obtained
AC-HMTD can be weaker than that of EXR-MTD when the
effectiveness of AC-HMTD is comparable to that of EXR-
MTD. Furthermore, the increase of the number of decision
variables would also enlarge the matrix dimensions involved
in the interior-point algorithm when solving the optimization
problem, under which the computation time of AC-HMTD
can be longer than those of DC-HMTD and EXR-MTD.
Moreover, the computation time of DC-HMTD is shorter than
that of EXR-MTD as the order of the formulated polynomial
optimization problem (PoP) for DC-HMTD (i.e., 2) is smaller
than that of EXR-MTD (i.e., 6).

B. Performance in Power Distribution Systems

In this subsection, we investigate the performance of EXR-
MTD in power distribution systems. First, we show the resid-
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(a) IEEE 14-bus

(b) IEEE 57-bus

Fig. 7: This figure compares the effectiveness and hiddenness of
EXR-MTD with those of DC-HMTD and AC-HMTD, where (a) and
(b) show the results in IEEE 14-bus and 57-bus cases, respectively.

uals ratt and rsys in radial 18-bus and 69-bus cases, when all
branches can be perturbed. The results depicted in (a)-(b) of
Fig. 8 indicate that it is hard for the attacker to identify the
existence of EXR-MTD as ratt is almost invariant after im-
plementing it. Meanwhile, EXR-MTD can effectively expose
the FDI attacks constructed with outdated branch parameters
to the BDD due to the noticeable improvement of rsys. Then,
extensive simulations are conducted in the radial 18-bus case
to validate the performance of EXR-MTD when merely partial
branches can be perturbed. For each number of perturbed
branches, 100 branch sets are randomly selected. Clearly, the
attack detection probability increases when more branches are
perturbed, i.e., more buses are covered by perturbed branches.
In particular, we find that the attack detection probability is
around 99% when more than 10 branches are perturbed. If
the number of perturbed branches is 5, the attack detection
probability can be smaller than 60% as merely 6 buses are
covered. It is also worthwhile noting that ratt increases as the
growth of the number of perturbed branches, but fortunately
the discrimination compared with that without EXR-MTD is
among 0.001p.u. Furthermore, it is observed that the larger
standard deviations of measurement noises will decrease the
attack detection probability as a larger detection threshold is
required to tolerate the fluctuations caused by measurement
noises. Oppositely, the hiddenness of EXR-MTD is improved
because more impact of reactance perturbation on ratt can be
covered by that of measurement noises.

C. Trade-off between Effectiveness and Hiddenness

In this subsection, we show the impact of weight parameter
watt on the effectiveness and hiddenness of EXR-MTD, where
10 logarithmically equally spaced points are selected between
100 and 104 as illustrated in Fig. 9. Evidently, in the IEEE
14-bus case, ratt and rsys both decrease as the growth of watt,

(a) Radial 18-bus (b) Radial 69-bus

(c) Radial 18-bus

Fig. 8: This figure shows the results of EXR-MTD in power dis-
tribution systems, where (a) and (b) depict the true residuals when
all branches can be perturbed, and (c) shows the effectiveness and
hiddenness of EXR-MTD when the number of perturbed branches
and δi increase.

indicating that watt plays a vital role in balancing the trade-off
between the two metrics. Specifically, the larger watt means
the stronger hiddenness and the weaker effectiveness of EXR-
MTD. Moreover, the same phenomenon appears in the radial
18-bus case except that the variation of ratt is within 0.001p.u.
Hence, we choose watt = 100 for power transmission systems
to guarantee that ratt is not too large, and watt = 1 for power
distribution systems to maximize rsys.

(a) IEEE 14-bus (b) Radial 18-bus

Fig. 9: This figure demonstrates the impact of weight watt on the
effectiveness and hiddenness of EXR-MTD.

D. Optimal Power Flow (OPF) Generation Cost

In this subsection, we show the impact of EXR-MTD on
the OPF generation cost, where weight parameter watt and the
bound of perturbation magnitude ratio vary as shown in Fig.
10. It is noticed that the alteration of OPF generation cost
is within 1.5$/hr in the IEEE 14-bus case, and bounded by
0.01$/hr in the radial 18-bus case. Though the OPF generation
cost is not directly considered in (31), we observe that the
alteration of OPF generation cost is reduced with the growth
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of watt, under which the designed EXR-MTD has the stronger
hiddenness and the fluctuations of AC power flows caused by
MTD is more limited. Hence, to reduce the impact of EXR-
MTD on the OPF generation cost, one alternative method is
to increase watt when designing EXR-MTD.

(a) IEEE 14-bus (b) Radial 18-bus

Fig. 10: This figure depicts the OPF generation cost under EXR-MTD
when weight parameter watt and the bound of perturbation magnitude
ratio vary.

E. Computation Time
In this subsection, we evaluate the computation time of

solving (31) in the 8 test cases extracted from Matpower when
all branches can be perturbed and show the results in TABLE
V. Similarly, the problem is solved 100 times in the core i9
computer, and the average and maximum computation time is
illustrated. We find that the computation time of designing
EXR-MTD in power distribution systems is in the order
of seconds and can be neglectable. While the computation
time of designing EXR-MTD in power transmission systems
increases with the number of buses and can reach at most 12.7
minutes in the IEEE 300-bus test case, which is feasible as the
perturbation commands are updated hourly in practice [16].

TABLE V: Computation Time [s]

Test cases
Metrics Avg. Max. Test cases

Metrics Avg. Max.

IEEE 14-bus 0.6028 1.0018 Radial 18-bus 0.7928 1.4860
IEEE 57-bus 11.075 13.934 Radial 69-bus 0.6836 1.0854
IEEE 118-bus 88.900 91.533 Radial 85-bus 0.8289 1.3299
IEEE 300-bus 674.32 762.02 Radial 141-bus 4.0657 5.1992

F. Scalability to Large-scale Systems
In this subsection, we test the scalability of EXR-MTD via

4 polish system test cases (including more than 2000 buses)
extracted from MATPOWER. When designing EXR-MTD,
we assume that all branches are equipped with D-FACTS
devices and can be perturbed. The computation time and the
performance of obtained EXR-MTD (reflected by ratt and rsys)
are illustrated in TABLE VI. It is observed that when the
weight parameter ωatt is appropriately chosen, then the EXR-
MTD strategy with strong effectiveness and hiddenness can
be quickly obtained, where rsys is significantly larger than ratt.
Nevertheless, if ωatt is not well tuned, then the computation
time of solving (31) can exceed 6 hours, which is caused by
the operations of large-scale sparse matrices. Hence, in the
future work, an efficient and dedicated solver is required to
address this issue.

TABLE VI: Results in Polish System Test Cases

Test cases
Metrics

ωatt ratt [p.u.] rsys [p.u.] Time [s]

Case2383wp 50 2.7520 4.0290 1289.6
Case2737sop 200 1.2409 7.1925 725.38
Case3012wp 1 2.1738 22.892 864.92
Case3120sp 1 2.7163 22.022 980.19

G. Discussions

In this subsection, we discuss the differences when applying
EXR-MTD to power transmission and power distribution
systems. We find that the EXR-MTD in power distribution sys-
tems performs better than that in power transmission systems
in terms of hiddenness and effectiveness, which are illustrated
individually as follows.

1) Effectiveness: The effectiveness of MTD in detecting
FDIAs is directly related to the number of covered buses by
perturbed branches [9]. Simply, if there exist buses not covered
by perturbed branches, then the FDIAs against these buses
can still easily bypass BDD. In Fig. 11, we compare the bus
coverage ratios in IEEE 14-bus and radial 18-bus cases. For
each number of perturbed branches, EXR-MTD is designed
under 100 randomly selected branch sets, and the number
of the buses covered by the branches whose perturbation
magnitude ratios are larger than 0.1% is counted. The bus
coverage ratio is computed via dividing the number of covered
buses by the number of total buses excluding the reference
bus. It is observed that the bus coverage ratio in the radial
18-bus case is generally larger than that in the IEEE 14-
bus case. Hence, when the numbers of the branches equipped
with D-FACTS devices are the same, the EXR-MTD in the
radial 18-bus case is likely to induce higher attack detection
probability as demonstrated by Fig. 6 and Fig. 8. Two reasons
are presented to explain the phenomenon. First, the impact of
reactance perturbation on ratt in power distribution systems is
small and even can be neglectable as indicated by TABLE I,
and thus more branches can be perturbed therein compared
with those in power transmission systems when guaranteeing
the same value of ratt. Secondly, the radial network is also
helpful to improve the bus coverage ratio as the same number
of branches therein is likely to cover more buses compared
with that in the mesh network.

Fig. 11: This picture compares the bus coverage ratios of EXR-
MTD in IEEE 14-bus and radial 18-bus cases.

2) Hiddenness: According to Fig. 3 and Fig. 4, the im-
pacts of reactance perturbation on measurement residual ratt
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in power transmission and power distribution systems are
totally different. Specifically, perturbing any single branch
in the IEEE 14-bus case (transmission system) is likely to
induce ratt > 0.02p.u., while ratt < 0.016p.u. can be always
guaranteed in the radial 18-bus case (distribution system).
Moreover, the hiddenness of EXR-MTD behaves similarly in
IEEE 14-bus and radial 18-bus cases as indicated by (c) of
Fig. 6 and (c) of Fig. 8, respectively. Concretely, the EXR-
MTD in the IEEE 14-bus case can improve ratt by at least
0.01p.u., while in the radial 18-bus case the increment on ratt is
bounded by 0.001p.u., which is almost indistinguishable from
the impact of measurement noises. The strong hiddenness of
EXR-MTD in power distribution systems is due to the small
branch ratios X/R, under which the reactance perturbation
merely has neglectable impact on the branch impedance.

VII. CONCLUSION

In this paper, we attempted to conduct an explicit analysis
on the MTD performance in AC power systems based on
measurement residuals. To handle the nonlinear dynamics,
we adopted the sensitivity analysis around the optimum point
and derived explicit approximations of residuals, with which
we designed EXR-MTD to jointly optimize the effectiveness
and hiddenness. Through simulation results, EXR-MTD was
shown to have the stronger hiddenness than existing MTD
strategies, while the effectiveness is stronger than or compa-
rable to those of existing MTD strategies. It was observed
that the impact of EXR-MTD on the OPF generation cost
is negligible as the strong hiddenness limits the fluctuations
of power flows, and the computation time of EXR-MTD is
tolerable even for the polish system test cases that includes
more than 2000 buses, both indicating that EXR-MTD has
the potential to be applied in real-world power systems.
Furthermore, the EXR-MTD in power distribution systems
possesses natural hiddenness as the branches usually have
small X/R ratios, which means that more metrics are required
for the better design of MTD therein besides effectiveness and
hiddenness.

APPENDIX

A. Proof of Proposition 1

Proof: Based on (11), we have

Jxxdx = −Jxzdz − Jxbdb, (32a)

JT
x dx− dJ = −JT

z dz − JT
b db. (32b)

With (32a), we can derive the sensitivities of system states x
with respect to z and b as follows

∂x

∂z
= −J−1

xxJxz, (33)

∂x

∂b
= −J−1

xxJxb. (34)

It follows from (32b) that
∂J

∂z
= (

∂x

∂z
)TJx + Jz. (35)

Substituting (33) into (35), we obtain
∂J

∂z
= Jz − (J−1

xxJxz)TJx. (36)

Moreover, the expressions of Jx, Jz , and Jxz can be derived
from (2) as

Jx = −(H∗x)T
[
z − h(x∗)

]
,

Jz = z − h(x∗), Jxz = −(H∗x)T.
(37)

Substituting (37) into (36), we have

∂J

∂z
=
[
I −H∗x(J−1

xx )T(H∗x)T
]
r(x∗). (38)

With r(x∗) = z−h(x∗), we can derive ∂J
∂z = ( ∂r

∂z )Tr. Hence,
according to (38), we have

∂r

∂z
= I −H∗xJ−1

xx (H∗x)T. (39)

Nevertheless, the sensitivities (34) and (39) are still implicit
due to the existence of Jxx and Jxt. To this end, we expand
Jxx and Jxt as follows

Jxx = (H∗x)TH∗x − J̃xx, (40)

Jxt = (H∗x)TH∗b − J̃xt, (41)

where J̃xx ∈ Rn∗n and its (i, j)th entry is (J̃xx)ij =[∂h2(x∗)
∂xi∂xj

]T
r(x∗), and similarly J̃xt ∈ Rn∗3L and its (i, j)th

entry is (J̃xt)ij =
[∂h2(x∗)

∂xi∂tj

]T
r(x∗). If the optimal objective

value J∗ = r(x∗)Tr(x∗) → 0, then r(x∗) → 0 also
holds, under which we obtain Jxx → (H∗x)TH∗x and Jxt →
(H∗x)TH∗b . Hence, Proposition 1 is proved by substituting (40)
into (34) and (39).

B. Proof of Proposition 2

Proof: Following (27) and (28), the length of the side signified
by b satisfies

b2 =
∥∥HMTD∗

xMTDc
× h1

∥∥2

2
.

Moreover, with ∆zsys = HMTD∗
xMTDc

× h1 + (HMTD∗
xMTDc

)⊥ × h2, we
have∥∥(HMTD∗

xMTDc
)T ×∆zsys

∥∥2

2
=
∥∥(HMTD∗

xMTDc
)T ×HMTD∗

xMTDc
× h1

∥∥2

2

= (HMTD∗
xMTDc

× h1)T ×HMTD∗
xMTDc

× (HMTD∗
xMTDc

)T ×HMTD∗
xMTDc

× h1

=

n∑
i=1

λi × α2
i × ‖vi‖

2
2 , (42)

where λi and vi,∀i ∈ {1, · · · , n} represent positive eigen-
values and corresponding unit orthogonal eigenvectors of
matrix (HMTD∗

xMTDc
)T×HMTD∗

xMTDc
, respectively. Here eigenvalues are

ordered in a non-decreasing manner, and parameters αi satisfy

HMTD∗
xMTDc

× h1 =

n∑
i=1

αi × vi.

Hence, by replacing all λi in (42) with λ1, we obtain∥∥(HMTD∗
xMTDc

)T ×∆zsys
∥∥2

2
≥ λ1 ×

n∑
i=1

α2
i = λ1 × b2, (43)

which is a upper bound of b2. The result follows after
substituting (43) into (27) as σmin(HMTD∗

xMTDc
) =
√
λ1.
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(a) ratt and rappr
att (b) rsys and rapprb

sys (c) rsys and rapprx
sys

Fig. 12: This figure visualizes the actual residuals ratt and rsys and the approximated residuals rappr
att , rapprb

sys , and rapprx
sys when

perturbing different branches in the IEEE 14-bus case (transmission system) with δi = 5%.

(a) ratt and rappr
att (b) rsys and rapprb

sys (c) rsys and rapprx
sys

Fig. 13: This figure visualizes the actual residuals ratt and rsys and the approximated residuals rappr
att , rapprb

sys , and rapprx
sys when

perturbing different branches in the radial 18-bus case (distribution system) with δi = 5%.

C. Details of Residual Approximations in the Presence of
Measurement Noises
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