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Abstract—The watermarking method, which adds unique wa-
termarks to data, has been widely used for integrity attack
detection in industrial control systems (ICSs). Existing literature
generally design watermarking mechanisms without considering
the existence of noises, which cannot be trivially applied to
the realistic ICS scenarios in the presence of strong noise
interference. On one hand, the low-intensity watermarking will
be ineffective under the strong noise environment; while on the
other hand, the oversized watermarking can possibly degrade the
control performance or even destabilize the system. Therefore, the
intensity of watermarks plays a fundamental role in balancing the
tradeoff between detection effectiveness and control performance,
which, to the best of our knowledge, has never been thoroughly
analyzed yet. To this end, in this paper, we for the first
time propose an optimal watermarking design method for ICSs
considering the detection-performance tradeoff. To begin with, we
shift the watermark container from data points to segments and
update the detection metrics to reduce the noise impact. Then,
we formulate an optimization problem to determine the strength
of watermarks to balance the detection-performance tradeoff.
Meanwhile, the detection effectivenss and control performance
metrics are analytically modeled and theoretically analyzed con-
sidering the discrepancy between added watermarks and noises,
signal quality, detection latency, as well as estimation of detection
metrics. Finally, extensive numerical simulations and systematical
experiments based on a practical Ethanol Distillation ICS are
conducted to validate the theoretical analysis and demonstrate
the outperformance of our proposed watermarking method in
comparison with related works.

Index Terms—watermark-based detection system, data in-
tegrity verification, industrial control systems

I. Introduction

INDUSTRIAL control systems (ICSs) are intelligent brains
that control and automate industrial processes in critical

infrastructures like power generation facilities and chemical
plants [1]. With the implementation of the Industrial Internet
of Things (IIoTs), real-time channels transfer the data from
smart sensors and other information sources frequently over
multiple layers, helping industrial devices and infrastructures
autonomously take actions [2]. It also breaks the physical iso-
lation between industrial local area networks and the internet,
which increases the exposures and risks of critical infrastruc-
tures. In recent years, the security accidents against ICSs have
been increasing dramatically, and the attacker is becoming
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more and more intelligent to hide their malicious footprint
from engineers [3]. The diversity of attack strategies makes it
difficult for the corresponding defense approaches to keep up.
For example, some attackers attempt to compromise upper-
layer standards such as TCP connections among engineer
stations [4] or control commands sent by programmable logic
controllers [5], while other threats include the injection of false
data into real-time field-layer protocols like PROFIBUS [6]
and CAN [7]. Both the mentioned attacks can cause severe
damage by deviating the system states from normal operating
conditions. The TRITON malware found in Saudi Arabia shut
down several petrochemical plants and caused a wide-area
impact [8].

There are some prevention methods from the informa-
tion technology (IT) domain like network communication
encryption [9], firewalls [10], and multi-factor authentication
[11] that can effectively protect the data integrity in ICSs.
These approaches will result in nontrivial time delay, which
is not acceptable in the real-time communication channels
of ICSs. Moreover, intelligent attackers often bypass them
and modify the information without triggering any alarm.
Hence, by integrating the cyber and physical properties of
ICSs, numerous intrusion detection systems (IDSs) have been
proposed to restrict the implications of intelligent attackers
when they bypass the security mechanisms from the IT do-
main [12]. Mainstream detection methods in ICSs can be
categorized as physical-model-based [13]–[20] and machine-
learning-based [21]–[26]. Model-based approaches obtain and
monitor physical invariants from the plant to be protected, and
in machine-learning-based methods such hidden relationships
can be easily extracted by intelligent algorithms. However,
there are limitations: 1) Learning-based approaches require
large normal and abnormal historical samples [27] to train
data-driven models, while time-consuming data cleaning and
model selection play important roles on accuracy [28]; 2)
Many model-based approaches rely on manually extracted
physical relationships and accurate physical parameters; 3)
Finally, due to the hardware resource constraints, the edge IIoT
devices are incapable of completing detection tasks promptly
with the sophisticated models of both kinds of methods [29].

Watermark-based detection technology has been recently
developed in ICSs to address the mentioned issues. This
concept is comparable to the digital watermark that has been
widely used in images and videos to protect data integrity.
The principle of watermarking is to inject some crucial infor-
mation into the measurements, which can only be identified
by a certain algorithm, and any mismatch indicates that the
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integrity has been compromised [30]. It’s important to note
that fingerprinting, another frequently used technology, differs
from watermarking technology. Fingerprinting is used to gen-
erate content-based compact fingerprints without modifying
the original information, while the watermarking technology
embeds covert information into sensor signals. Different from
the direct fingerprint comparison adopted in the fingerprinting
technology, watermarking uses the statistical features of the
data before/after removing watermarks for anomaly perception.
In [31], Mo et al. proposed a Gaussian watermarking scheme
for the detection of replay attacks in linear discrete-time
systems. The watermarks are proactively added into the control
signal such that system state and measurement would both
contain the watermark information. If the attacker is unaware
of the added watermarks, then the Kalman filter based detector
can easily verify the integrity of measurements by checking
the existence of the watermarking information. After that,
researchers focused on the optimal watermarking generation
scheme to balance the tradeoff between the control perfor-
mance and the detection effectiveness [32]–[34]. However, the
methods mentioned above are designed and validated based on
ideal mathematical models, which are difficult to be applied
to realistic ICS scenarios due to their high complexity. Song
et al. [35] first applied the watermarking scheme to enhance
the channel integrity in practical scenarios. The proposed
lightweight recursive watermarking method (RWM) generates
difficult-to-tamper-with watermarks on measurements that reli-
ably perceive the malicious modifications on time. To meet the
real-time requirement, sensors directly transfer the lightweight
watermarked signals to controllers for command calculation
without removing watermarks. It means watermarks can affect
legitimate operations of the ICS.

There still exist gaps in the application of the watermark-
based detection method to realistic ICS scenarios. First, it does
not take the existence of measurement noises into account in
practice, so watermarks may be invalidated when the strength
is much smaller than that of the noise. Second, it ignores the
effect of the added watermark on the control performance.
Intuitively, if the added watermark distorts the original signal,
the control performance may be largely degraded. Finally, the
detection metrics are computed based on data sampling points
from a sliding time window (STW). The STW with a long
length will cause nontrivial detection delay, and the irrationally
large detection metric resulting from the data sampling number
may cause a large number of false alarms.

To address the above issues, this article proposes an en-
hanced watermark-based detection method for practical ap-
plications. The proposed method includes three parts: 1)
Modeling the measurement noise to minimize its effect on
watermarks, to make the differences reflected on detection
metrics before and after the attack more significant; 2) For-
mulating an optimization problem with practical constraints to
determine the strength of watermarks and the length of STW;
3) Normalizing the detection metrics. The main contributions
of this article are as follows:

1) To the best of our knowledge, this is the first work
that proposes a watermark-based data integrity verifica-
tion method for ICSs considering realistic relationships

between watermarks and noises, as well as detection
performance requirements.

2) The watermark generation and intrusion detection al-
gorithms are more noise-resistant than those of the
RWM, since watermark containers are transferred from
fixed data points to variable-length segments inspired
by the Allan Variance (AVAR), and detection metrics
are normalized at the end.

3) The minimum watermark strength, as well as the proper
length of STW, are determined by solving the formulated
optimization problem with practical constraints. The
constraints are given considering the watermark-noise
differences, the signal quality, the estimation accuracy of
detection metrics, and the detection delay requirements.

4) The experimental results based on the realistic platform
show the effectiveness and superiority of our method.
A comprehensive comparison with other data integrity
protection methods is conducted.

The remainder of this article is organized as follows. The
system model and problems are formulated in Section II.
We design an enhanced watermark-based detection method
in Section III. Section IV demonstrates the simulation and
experiment results that show the effectiveness and superiority
of our method. We conclude this paper with future work in
Section V.

II. Preliminaries and Problem Formulation
A. ICS and Attack Models

The simplified control loop of ICS is shown in Fig. 1, where
the controller compares the sensor measurement 𝑠 with the
set point and calculates a control output 𝑢. The 𝑢 acts on
the actuators like valves and pumps to adjust the controlled
variables. The communication channel between the sensor and
controller should satisfy the real-time property of industrial
scenarios [36], while the research [37] theoretically analyzes the
negative effects of time delay on control system performance,
which is introduced during sampling and additional operations.
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+
- Controller

𝑢𝑢
Plant

𝑦𝑦

𝑛𝑛

Sensor
𝑠𝑠

𝑒𝑒

+

Fig. 1. The simplified control loop of ICS.

The sensor measurements 𝑠[𝑘] at time slot 𝑘 can be
decomposed as the legitimate part 𝑦[𝑘] and the noise 𝑛[𝑘],
i.e.,

𝑠[𝑘] = 𝑦[𝑘] + 𝑛[𝑘], (1)

where the former part contains the original continuous mea-
surements and the latter part is probably introduced by physical
environment or analog-to-digital conversion [38]. Our mission
is to ensure the data integrity of the 𝑠[𝑘].
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We assume that attackers have bypassed the prevention
mechanisms from the IT domain and are able to read and write
data arbitrarily, but they can not obtain the system time clock and
the TrustZone [39] of the embedded devices. Let 𝑘1 and 𝑘2 be
the beginning and ending timestamps of the attack, respectively,
the data injection process is described as

𝑠𝑎 [𝑘] =
{
𝑎[𝑘], 𝑘1 < 𝑘 < 𝑘2,

𝑠[𝑘], 𝑘 ≤ 𝑘1, 𝑘 ≥ 𝑘2,

where 𝑎[𝑘] can be any signal and 𝑎[𝑘] ≠ 𝑠[𝑘].

B. Watermark-based Detection Method
As shown in Fig. 2, the method is divided into three steps:

watermark-generation, watermark-decoding, and 𝜒2 testing val-
idation conducted by transmitters 1), receivers 2) and detectors
3), respectively [35].
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Fig. 2. The block diagram of the RWM.

1) Watermark-generation: The watermark at time 𝑘 is defined
as 𝑤 [𝑘] which is directly added to the 𝑠[𝑘] in the discrete time
domain, the process is completed by the transmitter as

𝑠𝑤 [𝑘] = 𝑠[𝑘] + 𝑤 [𝑘] . (2)

We define two hashing functions ℎ𝑛 (𝑘,K) and ℎ𝑟 (𝑠𝑤 [𝑘 −
1],K). To save computational resources, the hash tables are
established in advance and the key K is stored in the secure
storage area like TrustZone. The first hashing method receives
the current time 𝑘 as input, whereas the second one takes the
previous watermarked data 𝑠𝑤 [𝑘 − 1]. The 𝑤 [𝑘] value at time
slot 𝑘 is determined by

𝑤 [𝑘] =
{

0, 𝑘 = 0,
ℎ𝑛 (𝑘,K) + ℎ𝑟 (𝑠𝑤 [𝑘 − 1],K), 𝑘 ⩾ 1.

(3)

The hashing functions map the timestamp imformation and
the measurement causality information to some special system-
tolerable perturbations in a lightweight way, which makes wa-
termarks unique and hard to be completely erased. Additionally,
unlike public MD5 or SHA algorithms used in fingerprinting
technologies, the goal of our private algorithms is to ensure that
the watermarks added in sensor measurements are hard to be
analyzed and cracked by malicious adversaries.

2) Watermark-decoding: The receiver conducts two opera-
tions: it first directly sends received sequence to the controller
for the real-time control requirement in the belief that the
small watermark strength barely affects the normal control
performance. Meanwhile, it independently executes the removal
of watermark from duplicated received signals for further
checking. Under normal conditions, the received signal is
watermarked sequence 𝑠𝑤 . It is trivial to obtain the initial
recovered sample 𝑠𝑟 [0] = 𝑠𝑤 [0] = 𝑠[0], then the receiver
can decode the watermarked signal to the original signal 𝑠
recursively with the initial signal 𝑠𝑤 [0] as follows

𝑠𝑟 [𝑘] = 𝑠𝑤 [𝑘] − ℎ𝑛 (𝑘,K) − ℎ𝑟 (𝑠𝑤 [𝑘 − 1],K) = 𝑠[𝑘] . (4)

The removed parts are identical with the added watermarks since
the inputs of the hashing function, i.e., synchronized timestamp
𝑘 , received watermarked 𝑠𝑤 [𝑘 − 1], and the key K are all the
same.

However, when the communication channel is compromised
before 𝑘 − 1 such as clock asynchronism and watermarked
signal modification, the influence will propagate to the following
hashing values. The process

𝑠𝑟 [𝑘] = 𝑠𝑎 [𝑘] − ℎ𝑛 (𝑘,K) − ℎ𝑟 (𝑠𝑎 [𝑘 − 1],K) ≠ 𝑠[𝑘] (5)

fails to recover the original signal using wrong hashing inputs,
i.e., 𝑤𝑎 [𝑘] ≠ 𝑤 [𝑘]. The special statistical properties of the
watermark will remain in the original signal and can be easily
recognized by the detector.

3) 𝜒2 testing method: In the early 1970’s, Mehra et al. defined
the innovation sequence for the calculation of whiteness, mean
as well as covariance via hypothesis testing [40], which has been
widely used for intrusion detection in the control society. We
define 𝑔[𝑘] as the intrusion indicator, which is determined by
the square of the error drawn from data samples in a sliding time
window as follows

𝑔[𝑘] = 1
𝑊

𝑊∑︁
𝑘=1

𝑒[𝑘]𝜎−1
𝑛 𝑒[𝑘], (6)

where 𝜎𝑛 is the standard deviation of noise, and the predicted
error 𝑒[𝑘] is the difference between recovered signal 𝑠𝑟 [𝑘] and
predicted signal 𝑠𝑟 [𝑘 |𝑘 − 1]. Based on the principle of linear
approximation prediction, the first derivative is taken as the
increment of the next sampling point, with which we have

𝑒[𝑘] = 𝑠[𝑘] − 𝑠[𝑘 |𝑘 − 1]
≈ 𝑠[𝑘] − (𝑠[𝑘 − 1] + (𝑠[𝑘 − 1] − 𝑠[𝑘 − 2]))
= 𝑠[𝑘] − 2𝑠[𝑘 − 1] + 𝑠[𝑘 − 2] .

(7)

According to (2), current 𝑠[𝑘] is the sum of measurement 𝑦[𝑘],
noise 𝑛[𝑘] and watermark 𝑤 [𝑘], which are all independent and
identically distributed variables. We can rewrite the 𝑒[𝑘] as

𝑒[𝑘] = 𝑒𝑦 [𝑘] + 𝑒𝑛 [𝑘] + 𝑒𝑤 [𝑘], (8)

where the 𝑒𝑦 [𝑘], 𝑒𝑛 [𝑘], and 𝑒𝑤 [𝑘] are the respective discrete
second-order derivatives like 𝑒[𝑘].
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C. Detection Metrics With and Without Attacks
In this subsection, we show the detection metrics with and

without attacks, where the expected means of 𝑔[𝑘] are denoted
by E{𝑔[𝑘] | �̄�} and E{𝑔[𝑘] |𝐴}, respectively.

Without Attack: In normal cases, the watermark 𝑤 [𝑘] can
be totally removed from the watermarked data, i.e.,

𝑠𝑟 [𝑘] = 𝑠[𝑘] = 𝑦[𝑘] + 𝑛[𝑘] . (9)

Lemma 1: Assume that continuous legitimate data 𝑦[𝑘]
is smoothing and the noise 𝑛[𝑘] follows normal distribution
N(0, 𝜎2

𝑛), we have

E{𝑔[𝑘] | �̄�} = 𝜎−1
𝑛 E{𝑒𝑘2} = 𝜎−1

𝑛 E{(𝑒𝑦 + 𝑒𝑛)2}
= E{𝑒2

𝑛} = 6𝜎𝑛.

Proof: E{(𝑒𝑦 + 𝑒𝑛)2} can be regarded as the cumulative
sum of E{𝑒2

𝑦}, E{𝑒2
𝑛} and E{2𝑒𝑦𝑒𝑛}. The first part 𝑒𝑦 has an

alternative expression 𝑒𝑦 = 𝑦
′′ · 𝑇2

𝑠 , where 𝑇2
𝑠 is the sampling

time of the sensor and it is in microsecond range due to the high
sampling rate. Hence E{𝑒𝑦} tends to be zero, under which we
have E{𝑒2

𝑦} = 0. According to the assumption that 𝑦 and 𝑛 are
independent, we can derive E{2𝑒𝑦𝑒𝑛} = 0. We expand the last
part E{𝑒2

𝑛} to E{(𝑛𝑘 − 2𝑛𝑘−1 + 𝑛𝑘−2)2}, as noise points in every
time slot are also independent. the expectation of noise further
reduces to E{𝑛𝑘2 + 4𝑛𝑘−1

2 + 𝑛𝑘−2
2} = 6𝜎2

𝑛 .
With Attack: When the attacker modifies the measurements

starting from a random point, the input pairs of hash functions
would be altered accordingly, under which the watermark cannot
be removed, i.e.,

𝑠𝑟 [𝑘] = 𝑠𝑎 [𝑘] − 𝑤𝑎 [𝑘] ≠ 𝑠[𝑘] . (10)

The expected value of 𝑔[𝑘] is determined by the modified data
𝑠𝑎 [𝑘] and the incorrectly removed watermark 𝑤𝑎 [𝑘], which is
formally represented as

E{𝑔[𝑘] |𝐴} = 𝜎−1
𝑛 E{𝑒2

𝑠𝑎} + 𝜎−1
𝑛 E{𝑒2

𝑤𝑎}. (11)

Since E{𝑒2
𝑠𝑎} ⩾ 0, the detection metric E{𝑔[𝑘] |𝐴} with

attack will deviate significantly from the one without attack
once E{𝑒2

𝑤𝑎} is far larger than 6𝜎𝑛2. An intuitive method to
enlargeE{𝑒2

𝑤𝑎} is to choose the watermark with a large strength.
Besides, as every single sample 𝑔[𝑘] fluctuates wildly around
the theoretical expected value due to the stochasticity, enough
𝑔[𝑘] samples should be adopted to estimate the overall mean.
Hence, the detector has to determine a proper length of STW𝑊

to decrease the fluctuation degree and reflect the actual level of
E{𝑔[𝑘]}.

D. Motivation and Problem Formulation
The RWM attempts to find an appropriate threshold 𝜉 to

automatically judge anomalies by comparing 𝑔[𝑘] with 𝜉. If
there is an intrusion, the indicator 𝑔[𝑘] appears to show a
significant rise exceeding the 𝜉. However, without considering
the measurement noise, the arbitrary setting of the watermark
strength may make E{𝑒2

𝑤𝑎} comparable or smaller than 6𝜎𝑛2,
under which the impact of an attack is indistinguishable from
that of the measurement noise. As depicted in Fig. 3, a piece of
signals with 𝜎𝑛 = 0.02 is intercepted and the attack is launched

at 𝑡 = 40s. Three kinds of watermarks with different variances
𝜎𝑤 = 0.01, 0.02, 0.08 are considered. The results indicate
that the small watermark strength (𝜎𝑤 ≤ 𝜎𝑛) is submerged
by the measurement noise, and it is difficult to set up an
appropriate threshold. In comparison with a large watermark
strength (𝜎𝑤 > 𝜎𝑛), the range of threshold falls in the range of
𝑔[𝑘] ∈ [0.2, 0.4], from which we can choose one feasible value
to detect the anomaly.
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Fig. 3. The performance of watermarks with different strengths.

Although increasing the watermark strength can effectively
improve the positive detection rate, there should be an upper
bound for the watermark strength since the watermarked data
is directly transferred to the controller for control command
calculation, to satisfy the real-time requirement. The fluctua-
tions introduced by too large watermarks may make the system
deviate severely from the set point. We apply two watermarks
with 𝜎𝑤 = 1 and 𝜎𝑤 = 5 to a typical heating system simulation
in the distillation process, where the controller controls a fuel
valve of the boiler by receiving temperature feedback. Fig. 4
shows that the large watermark strength causes a significant
variation in both control performance and controller outputs,
which could destroy the valve and lead to a PID controller’s
integrated windup problem.

The above two scenarios show that the noise scale and
watermark strength have a substantial impact on the intrusion
indicator 𝑔[𝑘] as well as the legitimate measurement. We
conclude the problems as follows:

• Most approaches for noise removal are offline [41]. There
is no suitable method for online modeling of the noise to
weaken the impact of which on the performance of the
watermark-based integrity verification.

• The relationship between E{𝑒𝑤𝑎2} and E{𝑒𝑠𝑎2} cannot
be quantified before we determine the characteristics of
watermarks, and the impact of watermarks on legitimate
signals is also not modeled.

• The distributions of 𝑔[𝑘] samples before and after the
attack are determined by the length of STW 𝑊 in the
equation (6). It is significant to find a description of the
distance of the two distributions to guide the choice of𝑊 .
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Fig. 4. Large watermark strength leads to a system fluctuation.

III. The Enhanced Watermark-Based Detection Method
The proposed detection method will first gather sensor data

series from the historical database to estimate the characteristics
of noises. This step helps determine the proper length of the
data segment to carry watermarks which weaken the effect
of noises. Then, an optimization problem is formulated to
find the minimum watermark strength under the condition
that the control performance and detection performance are
both well satisfied. The detection performance is specifically
summarized as four mathematical constraints the difference
between noises and watermarks, data quality, detection latency,
and the difference between detection metrics before and after the
attack. The optimal watermark strength with appropriate STW
length can be directly applied to the original watermarking-
related modules (e.g., RWM). Finally, the method uses a
normalized threshold-based detection rule.

A. Noise Modeling and Smoothing
Intuitively, modeling the noise is the first step to eliminate its

effect on watermarked signals. It is difficult to give an accurate
description of the noise in realistic industrial sensors since
factors like the external environment and equipment quality
can affect the measurements. Many studies on watermarking
methods assume that the noise is normally distributed with
known expected value and variance, to gain more insights
on the relations between the noise strength and watermarking
performance. After we collect a large number of system noise
samples in the targeted industrial sensors, we find the noises
are very close to the normal distribution, so we also assume

that the noise follows the normal distribution for subsequent
theoretical analysis. Moreover, with the perspective that the
sensor noise exhibits different features from a micro to a macro
time scale, we introduce Allan Variance (AVAR) [42], which
was first developed in the 1960s for oscillator frequency stability
investigation in a clock system and has been recently applied
to reveal the error characteristics of sensor measurements, to
provide stability information on the types and strength of various
noise terms [43].

The AVAR’s basic principle is to divide the time series into
non-overlapping continuous blocks, each including a segment
of measurements that spans the length determined by the
correlation time 𝜏, and the value of 𝜏 is an integer multiple
of the sampling interval. Such segments are regarded as new
units for the calculation of statistical features at the current time
scale. To illustrate the process explicitly, the signal sequence
𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑁 } containing 𝑁 sampling points is divided
into 𝐾 clusters as

𝑠1, . . . , 𝑠𝑚︸      ︷︷      ︸
𝑘=1

, 𝑠𝑚+1, . . . , 𝑠2𝑚︸           ︷︷           ︸
𝑘=2

, . . . , 𝑠𝑁−𝑚+1, . . . , 𝑠𝑁 .︸               ︷︷               ︸
𝑘=𝐾

(12)

Each cluster contains 𝑚 values and the 𝜏 equals to 𝑚/ 𝑓𝑠 , where
the 𝑓𝑠 is the sampling frequency.

The mean value of each cluster forms an innovative sequence
Θ. We use

𝜃 [𝑘] = 1
𝑚

𝑚∑︁
𝑖=1

𝑠 (𝑘−1)𝑚+𝑖 (13)

to represent the 𝑘th element. This step is quite similar to the
mean filtering method in that it smooths down noise within
each block while maintaining the fluctuating features among all
blocks.

Under a proper block length, the noise’s impact on watermarks
can be effectively reduced when the sequence Θ is used to
calculate the new intrusion indicator 𝑔𝑛𝑒𝑤 [𝑘], which is defined
as

𝑔𝑛𝑒𝑤 [𝑘] =
1
𝑊

𝑘∑︁
𝑖=𝑘−𝑊+1

𝑒𝜃 [𝑘]𝜎−1
𝜃 𝑒𝜃 [𝑘], (14)

where
𝑒𝜃 [𝑘] = 𝜃 [𝑘] − 2𝜃 [𝑘 − 1] + 𝜃 [𝑘 − 2] . (15)

Remark 1: In Fig. 5, the black points are original sampling
points 𝑠[𝑘] while the short red lines are mean values 𝜃 [𝑘] of 32
points. It is observed that the discrete points fluctuate between
−0.25 to 0.25, while these lines are smoother and lie within the
bound [−0.05, 0.05]. As the red zone depicted in Fig. 5, adding
a watermark directly to a single sampling point requires a larger
strength than those to a segment of sampling points to achieve
a similar detection performance. That is, adding watermarking
identifiers to 𝜃 instead of 𝑠 helps reduce the watermark strength.
On this account, both the signal quality and control system
stability can be guaranteed.

In the following, we use E{𝑔𝑛𝑒𝑤 [𝑘] | �̄�} and E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴} to
separately represent 𝑔𝑛𝑒𝑤 [𝑘]’s mean values before and after the
attack. Compared with the original 𝑔[𝑘], 𝑔𝑛𝑒𝑤 [𝑘] stays below
a lower level with the same noise.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Theorem 1: If the noise 𝑛[𝑘] of the original sequence 𝑆

subjects to normal distribution N(0, 𝜎2
𝑛), we have

E{𝑔𝑛𝑒𝑤 [𝑘] | �̄�} =
1
√
𝑚
E{𝑔[𝑘] | �̄�} = 6

√
𝑚
𝜎𝑛 (16)

where we define the deviation of Θ is 𝜎𝜃 = 𝜎𝑛/
√
𝑚.

Proof: 𝑠1, 𝑠2, . . . , 𝑠𝑚 are independent with each other.
According to the additive property of normally distributed
random variables, the sum of 𝑠1, 𝑠2, . . . , 𝑠𝑚 construsts a new
variable Σ subjecting to N(0, 𝑚𝜎2

𝑛). As Θ = 𝑚−1Σ, we can
derive 𝑚−1Σ ∼ N(0, 𝑚−1𝜎2

𝑛). The variable Θ follows the
Lemma 1.

Remark 2: The theoretical result demonstrates that this
approach is proven to be effective in weakening the impact
of noise on the initial expected value of the 𝜒2 detector if
the noise distribution is approximately regarded as a normal
distribution. For other general noise distribution types like
completely random distributions, qualitatively speaking, our
approach still works, but the explicit expressions regarding
weakened degrees need to be studied in future works.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

-0.05
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Fig. 5. Different strength requirement for watermark addition.

It becomes another significant issue to select the appropriate
value of 𝑚 to make the E{𝑔𝑛𝑒𝑤 [𝑘]} less than a setpoint 𝐸𝑚𝑎𝑥 ,
meanwhile, we also set an upper bound 𝜏𝑚𝑎𝑥 for 𝑚 to ensure
it will not be too large to affect the detection performance.
According to the noise type, we divide it into two cases:

1) For the Gaussian noise, we can calculate the unbiased
estimation of standard deviation 𝜎𝑛 from a stationary
sampling interval by

𝜎𝑛 =

√︄∑𝑁
𝑖=1 (𝑠𝑖 − 𝑠)
𝑁 − 1

. (17)

According to the Theorem 1, we have

36𝜎𝑛2

𝐸𝑚𝑎𝑥
2 ⩽ 𝑚 ⩽ 𝜏𝑚𝑎𝑥 , (18)

and the optimal length 𝑚∗ takes the smallest integer in the
range.

2) For other difficult-to-model noises, we propose a heuristic
solution which uses the binary search algorithm in the
range [0, 𝜏𝑚𝑎𝑥]. At each step of execution, it calculates the
expectation E{𝑔𝑛𝑒𝑤 [𝑘] | �̄�} based on the equations (13)-
(15) with the obtained signal samples until the detection
value drops below the threshold.

Algorithm 1 illustrates the above process. The function first
picks a set of sensor measurements to check whether the noise is
normally distributed. If the result is true, the algorithm directly

Algorithm 1: Block Size Determination Algorithm
Input: Offline signal set 𝑆; Target 𝐸𝑚𝑎𝑥 ; Limitation

𝜏𝑚𝑎𝑥
Output: Block size 𝑚

1 Set initial 𝑚𝑖 = 1 and 𝑚𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥 ;
2 case = IfWhiteNoise(𝑆);
3 if case=True then
4 Calculate 𝜎𝑛 = 𝑆𝐷𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑆);
5 return 𝑚𝑖 = 𝑀𝑖𝑛𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (36𝜎𝑛2/𝐸2

𝑚𝑎𝑥 , 𝜏𝑚𝑎𝑥)
6 else
7 Truncate signal time series 𝑆𝑖 to nearest integer

power of 2 to yield data length = 2𝑝(𝑝 ∈ Z+);
8 while 𝑚𝑖 ⩽ 𝑚𝑚𝑎𝑥 do
9 Initialize block number 𝑘 = 1;

10 Set number of data blocks, 𝐾𝑖 = 2𝑝/𝑚𝑖;
11 while block number 𝑏 ⩽ 𝐾𝑖 do
12 Find mean for 𝜃𝑖

𝑘
= 1
𝑚𝑖

∑𝑚𝑖

𝑗=1 𝑠 (𝑘−1)𝑚𝑖+ 𝑗 ;
13 𝑘 ← 𝑘 + 1;
14 if 𝑘 ⩾ 3 then
15 Calculate 𝑒𝑖

𝜃
[𝑘] = 𝜃𝑖

𝑘
− 2𝜃𝑖

𝑘−1 + 𝜃
𝑖
𝑘−2;

16 end
17 end
18 Calculate expected 𝐸𝑜𝑏 = 1

𝐾𝑖−2
∑𝐾𝑖

𝑗=3 𝑒
𝑖
𝜃

2 [𝑘];
19 if 𝐸𝑜𝑏 ⩽ E{𝑔𝑛𝑒𝑤} then
20 return 𝑚𝑖
21 end
22 𝑚𝑖 ← 2𝑚𝑖
23 end
24 end

calculate the suitable𝑚, otherwise, it searches for the value of𝑚
that will effectively lower the watermark’s strength range below
the threshold by calculating the variance of the innovative series
from micro to macro time scales. The transmitter releases the
optimal𝑚∗ for further usage. This step is intermittently activated
to handle the drift of noise characteristics.

Remark 3: Clearly, when the exact noise distribution knowl-
edge is available, the determination of 𝑚 only requires to
calculate equations (17) and (18) once. While the search of
𝑚 without knowing the noise distribution needs to calculate
equations (13)-(15) for multiple times, which is time-consuming
and induces much more computation burden.

B. Mathematical Model of the Optimization Problem

At the beginning, we give a full description of the watermark
strength. Equation (3) shows that 𝑤 [𝑘] at time slot 𝑘 consists of
two hash values generated by ℎ𝑛 (𝑘,K) and ℎ𝑟 (𝑠𝑤 [𝑘 − 1],K),
respectively. The ℎ𝑛 (𝑘,K) and ℎ𝑟 (𝑠𝑤 [𝑘 − 1],K) separately
map the discrete timestamp sequence and the watermarked
measurement sequence to fixed-size values from [−𝜇/2, 𝜇/2].
According to the uniformity property of the hash function, every
hash value in the output range should be generated with roughly
the same probability, which means both two hashing parts follow
identical uniform distributionsU(−𝜇/2, 𝜇/2). So we define the
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upper bound of watermark strength as |𝑤 [𝑘] |, and

max
𝑘⩾0
|𝑤 [𝑘] | = 𝜇

2
+ 𝜇

2
= 𝜇. (19)

Since the carrier of watermarks changes from sequence 𝑆
to Θ, our goal is to choose the minimum 𝜇 on Θ which
satisfies the detection and control requirements. Inspired by
the LQG controller [44], we adopt the quadratic objective
function J (𝜇) to evaluate the strength of watermarks. Four
significant constraints describe 1) the sensitivity of the detector
to watermarks in the presence of noise, 2) the impact of
watermark and noise on the signal quality, 3) the detection
latency, and 4) the distribution distinction of 𝑔𝑛𝑒𝑤 [𝑘]. We
describe them in detail in the following. The optimization
problem is formulated as

𝑎𝑟𝑔min
𝜇≥0

J (𝜇) = 1
2
𝜇2, (20)

s.t. 𝑅(𝜇) ≥ 𝑟𝑙 , (21)
SNWR(𝜇) ≥ 𝜂, (22)

𝑇𝑠𝑒𝑡 − 𝑇 (𝑊) ≥ 0, (23)
Ψ(𝜇,𝑊) ≥ 0. (24)

First, we have noticed that watermarks with small strength will
be concealed by large noises and rendered useless, so we aim
to set a fixed obvious level gap of E{𝑔𝑛𝑒𝑤} between non-attack
and attack scenarios, which is called the detection sensitivity.
We quantify the logarithmic ratio of E{𝑔𝑛𝑒𝑤 |𝐴} to E{𝑔𝑛𝑒𝑤 | �̄�}
above the detection sensitivity.

Detection Sensitivity Constraint: The objective of feasible
watermark strength is to make sure that E{𝑔𝑛𝑒𝑤 [𝑘]} can exceed
the agreed new threshold. The lower bound of E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴} is
calculated as

E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴} = 𝜎−1
𝜃 E{𝑒2

𝜃𝑎} + 𝜎−1
𝜃 E{𝑒2

𝑤𝑎}
⩾ 𝜎−1

𝜃 E{𝑒2
𝑤𝑎},

(25)

where 𝑒2
𝜃𝑎

is the unknown calculation residue caused by the
injected false data.

Theorem 2: The lower bound of E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴} is represented
as a polynomial function 𝐸 (𝜇)

𝜎𝜃
−1E{𝑒2

𝑤𝑎} = 𝐸 (𝜇) = 𝜎𝜃 −1𝜇2. (26)

Proof: The detailed proof can be found in Appendix A.
We use the function

𝑅(𝜇) = ln
𝜎𝜃
−1E{𝑒2

𝑤𝑎}
E{𝑒2

𝜃
}

= ln
𝜇2

6𝜎𝜃 2 (27)

to quantify the level-stepping degree of E{𝑔𝑛𝑒𝑤 [𝑘]} caused by
the attack. The larger the watermark strength 𝜇, the greater the
difference in 𝑔[𝑘] before and after the attack. The𝜎𝜃 2 item in the
denominator of (27) shows that the strong noise can invalidate
the inappropriate watermarks with small strength. 𝑅(𝜇) needs
to be greater than the detection sensitivity 𝑟𝑙 as (21).

Signal Quality Constraint: The second key point is that the
oversized watermark strength can degrade the signal quality,
just like the distortion caused by measurement noises. The

premise of active attack detection is that the added watermarks
cannot severely interfere with the functionalities of the original
data. Hence, the watermarked measurements fed back to the
controller should not make the controlled variables deviate
sharply from the set points. Inspired by the Signal-to-Noise
Ratio (SNR) which describes the influence of existing noises
on sensor measurements quantitatively, we introduce a similar
concept as the Signal-to-Noise-plus-Watermark Ratio (SNWR),
to mathematically describe the impact of watermarks and
measurement noises on the original data. The SNWR is defined
as the ratio of the mean value of signals to the standard deviation
of the watermarked measurement, i.e.,

SNWR(𝜇) =
1
𝑁

∑𝑁
𝑘=1 𝑠[𝑘]√︁

𝜎2
𝑛 + 𝜎2

𝑤

≥ 𝜂. (28)

Notably, the mean value of the sampling points represents the
signal level, and the variances of the noises and watermarks
contribute to the disturbance. The 𝜎2

𝑛 is estimated by sampling
points, not the segments. The 𝜎2

𝑤 equals 𝜇2/6, and the 𝜂 is the
minimum SNWR that channels can accept.

Detection Latency Constraint: As equation (14) shows, we
adopt the STW technique that samples finite items of 𝑒𝜃 2 to
calculate 𝑔𝑛𝑒𝑤 [𝑘]. Some detection latency, which is related to
the block size 𝑚 and the length of STW 𝑊 , would inevitably
be caused. First, when we transfer the watermark carrier from
single points 𝑠[𝑘] to segments 𝜃 [𝑘], we need to wait 𝜏 = 𝑚/ 𝑓𝑠
seconds while assembling continuous 𝑚 points to generate the
follow-up segment. Second, when the attack happened at time
slot 𝑘 , the STW needs to contain segments from 𝜃 [𝑘 + 1] to
𝜃 [𝑘 + 𝑊] to correctly estimate the E{𝑔𝑛𝑒𝑤 [𝑘]}. The latency
function 𝑇 (𝑊) should satisfy

𝑇 (𝑊) = 𝑊𝜏 = 𝑚𝑊

𝑓𝑠
≤ 𝑇𝑠𝑒𝑡 , (29)

where the maximum acceptable attack latency is set to be 𝑇𝑠𝑒𝑡 .
Distribution Distinction Constraint: The watermark strength

𝜇 and the length of STW 𝑊 jointly affect the distributions of
𝑔𝑛𝑒𝑤 [𝑘] before and after the attack. Fig. 6 illustrates that the
increased 𝑊 will effectively reduce the variance of 𝑔𝑛𝑒𝑤 [𝑘].
The observed 𝑔𝑛𝑒𝑤 [𝑘] before and after the attack would both
approach the theoretical derived value E{𝑔𝑛𝑒𝑤 [𝑘]}. As Fig.
6 shows, large watermark strength 𝜇 can discriminate the
two distributions. In the condition that 𝜇 is small, the two
distributions would be nearly identical. When it comes that
𝑔𝑛𝑒𝑤 [𝑘] falls into the overlapping areas of the two distributions,
it will be hard to judge the existence of intrusions. The
probability density function of a discrete random variable X
is defined as

𝐹X (𝑥) = 𝑃(X < 𝑥) = 𝑧, (30)

and its inverse function is

𝐹−1
X (𝑧) = 𝑥, (31)

where 𝑧 is the probability of the samples occurring with values
less than the variable value 𝑥.

Random variables of 𝑔𝑛𝑒𝑤 [𝑘] before and after the attack are
defined separately as Ḡ and G, and there is an overlap area
between distributions Ḡ and G. Function Ψ(𝜇,𝑊)

Ψ(𝜇,𝑊) = 𝐹−1
G (1 − 0.95) − 𝐹−1

Ḡ (0.95) (32)



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

0 10 20 30 40 50

Window size

10-6

10-4

10-2

100

102

g
ne

w
[k

]

Ranges before intrusion
Ranges after intrusion

(a) 𝜇 is small

0 10 20 30 40 50

Window size

10-6

10-4

10-2

100

102

g
ne

w
[k

]

Ranges before intrusion
Ranges after intrusion

(b) 𝜇 is large

Fig. 6. The distribution of 𝑔𝑛𝑒𝑤 [𝑘 ] over different (𝜇,𝑊 ) pairs.

is defined as the distinction of the two distributions. Ψ(𝜇,𝑊)
ensures that 95% of the sample points are within the respective
distinguishable intervals.

Fig. 7 is a longitudinal section with the fixed STW size
in Fig. 6b, where the black-colored region contains 95% of
the Ḡ samples that are not attacked, and the same as the red
region for G. Constraint (24) greatly reduces the probability of
𝑔𝑛𝑒𝑤 [𝑘] that appears in the green region. Qualitatively speaking,
increased 𝜇 helps pull the two peaks of the distribution apart and
extended𝑊 shrinks the distribution toward the expected mean.

𝑭𝑭�𝑮𝑮
−𝟏𝟏(𝟎𝟎.𝟗𝟗𝟗𝟗) 𝑭𝑭𝑮𝑮−𝟏𝟏(𝟎𝟎.𝟎𝟎𝟗𝟗)

Fig. 7. Overlap area between the distribution of Ḡ and that of G.

Since we cannot obtain the analytic expression of Ψ(𝜇,𝑊),
we show the relationship between Ψ(𝜇,𝑊) and the pair
(𝜇,𝑊) through the numerical results in Fig. 14. Algorithm 2
shows a numerical solver for problem (20). Considering that
the detection sensitivity constraint 𝑅(𝜇), the signal quality
constraint SNWR(𝜇), and the detection latency constraint𝑇 (𝑊)
all have explicit functions, the numerical solver directly solves
the inequalities for a feasible range [𝜇𝑙 , 𝜇ℎ] and the maximum
length of STW 𝑊𝑚𝑎𝑥 . Then, a numerical traversal search is
performed for Ψ(𝜇,𝑊) with the step (Δ𝜇,Δ𝑊).

C. Attack Response Activating Function
The difference between E{𝑔𝑛𝑒𝑤 [𝑘] | �̄�} and E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴}

is obvious after we choose the appropriate watermarks, but
the detection metrics need to be normalized to avoid the false
alarm caused by measurement noises with different strengths.
For instance, under a low level of the measurement noise,
E{𝑔𝑛𝑒𝑤 [𝑘]} that changes from 1 to 10 indicates the existence of
an attack, but when the noise level is large, only the E{𝑔𝑛𝑒𝑤 [𝑘]}
stepping from 10 to 100 indicates an attack. Another problem is
that the traditional threshold-based detection may be confused
by the sharp noise variation. Assuming that we set 𝜉 = 20 in the
second condition if the noise causes 𝑔𝑛𝑒𝑤 [𝑘] to rise to around

Algorithm 2: Pair (𝜇,𝑊) Searching Algorithm
Input: Constraints 𝑟𝑙 , 𝜂, and 𝑇𝑠𝑒𝑡 ; Historical data 𝑆;

Time 𝜏
Output: Optimal (𝜇∗,𝑊)

1 Solve 𝑅(𝜇) ⩾ 𝑟𝑙 and SNWR(𝜇) ⩾ 𝜂⇒ [𝜇𝑙 , 𝜇ℎ];
2 Set𝑊 𝑗 ← 𝑊𝑚𝑎𝑥 = 𝑇𝑠𝑒𝑡/𝜏;
3 Set 𝜇𝑖 ← 𝜇𝑙;
4 Use 𝑆 and𝑊𝑚𝑎𝑥 to generate Ḡ;
5 Add watermarks to 𝑆 generated by 𝜇𝑖;
6 Inject false data Δ𝑠 to 𝑆;
7 Remove watermarks and get recovered samples 𝑆𝑎;
8 Use 𝑆𝑎 and𝑊𝑚𝑎𝑥 to generate G, create Ψ(𝜇𝑖 ,𝑊 𝑗 );
9 while Ψ(𝜇𝑖 ,𝑊 𝑗 ) < 0 do

10 𝜇𝑖 ← 𝜇𝑖+ step size Δ𝜇;
11 Update Ψ(𝜇𝑖 ,𝑊 𝑗 ) based on 𝑙𝑖𝑛𝑒3 − 7;
12 if Ψ(𝜇𝑖 ,𝑊 𝑗 ) ⩾ 0 and 𝜇𝑖 ⩽ 𝜇ℎ then
13 return Pair (𝜇𝑖 ,𝑊 𝑗 )
14 else
15 return Null
16 end
17 end
18 while Ψ(𝜇𝑖 ,𝑊 𝑗 ) ⩾ 0 do
19 𝑊 𝑗 ← 𝑊 𝑗− step size Δ𝑊 ;
20 Update Ψ(𝜇𝑖 ,𝑊 𝑗 ) based on 𝑙𝑖𝑛𝑒3 − 7;
21 if Ψ(𝜇𝑖 ,𝑊 𝑗 ) < 0 then
22 return Pair (𝜇𝑖 ,𝑊 𝑗 + Δ𝑊);
23 end
24 end

25, the detector will incorrectly alarm, in spite of that only the
raise of 𝑔𝑛𝑒𝑤 [𝑘] to 100 indicates an attack.

An attack response activating function 𝐷 [𝑘] standardizes the
rule with noise tolerance to some extent. First, we introduce the
neighbor contrast 𝑉𝑛𝑐 [𝑘]

𝑉𝑛𝑐 [𝑘] =
𝑔𝑛𝑒𝑤 [𝑘]

𝑔𝑛𝑒𝑤 [𝑘 −𝑊]
(33)

to calculate the relative distance between two observed points
with a distance 𝑊 , which considers the inherent calculation
delay [41]. 𝑉𝑛𝑐 helps detectors quickly and precisely capture
the rate of values changing. The two observed points are not
adjacent to each other with𝑊 distance. The spikes triggered by
attacks and noises are significantly different as shown in Fig. 8.
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Fig. 8. The largest spike in 𝑉𝑛𝑐 caused by an attack.

𝐷 [𝑘] is with output 0/1 separately representing normal and
abnormal situations. It needs to consider the previous state to
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implement the flip, and the previous state reveals the level that
𝑔𝑛𝑒𝑤 [𝑘] remains at. The detector will first initialize 𝐷 [0] = 0
if there is no attack. In practical application, the new threshold
𝛼 can be slightly less than 𝑒𝑟𝑙 which we use as the detection
sensitivity.

𝐷 [𝑘] =


1 {𝑉𝑛𝑐 > 𝛼} ∧ {𝐷 [𝑘 − 1] = 0}
0 {𝑉𝑛𝑐 < 𝛼−1} ∧ {𝐷 [𝑘 − 1] = 1}

𝐷 [𝑘 − 1] 𝛼−1 < 𝑉𝑛𝑐 < 𝛼
(34)

IV. Evaluations
We apply the proposed method to a platform of the Ethanol

Distillation System (EDS), where the sensors contain some
inherent noises [45]. The EDS contains 3 feedback control loops
of liquid level, cooling water flow, and tower temperature as
Fig. 9 illustrates. We mainly focus on the liquid level loop.
Water evaporation caused by the heater and water reflux caused
by condensation can cause small level disturbances, and sensor
sampling also has errors. In this section, We use a series of real
level sensor readings to model the liquid level measurements
with noise and search for the optimal watermark strength using
the numerical solver.

1# Liquid level

2# Water flow

3# Temperature

Fig. 9. The EDS platform.

A. Numerical Results for Watermark Optimization
We extract a typical piece of historical liquid level mea-

surements to determine the block size. Fig. 10 shows that the
liquid level fluctuates between 520mm and 540mm with a few
spikes, due to sensor accuracy limitations and oscillations during
system operation. The expected mean is 534mm with variance
𝜎2
𝑛 = 2.26, and the sampling rate 𝑓𝑠 is 50Hz. As Fig. 11 shows,

the green solid line represents the theoretical E{𝑔𝑛𝑒𝑤 [𝑘]}’s
downward trend following the expression 6𝜎𝑛/

√
𝑚. The red

dotted line is calculated by automatic simulated signals with
the normally distributed noise N(0, 𝜎2

𝑛), and the black dotted
line is drawn by the practical data. Both the simulation and
experimental results prove that the decreasing of E{𝑔𝑛𝑒𝑤 [𝑘]}
with the block size increasing follows an approximated inverse
proportion. As the target value of the detection metric is 5,
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Fig. 10. A segment of real data from the liquid level sensor.
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Fig. 11. The decreasing of E{𝑔𝑛𝑒𝑤 [𝑘 ] } with the increasing block sizes.

we choose 𝑚 = 4 to simplify the calculation of the following
optimization problem.

Before we try to solve the watermark optimization problem
for the liquid level, we conduct simulations to verify the lower
bound of E{𝑔𝑛𝑒𝑤 [𝑘]} after the attack derived in equation (26).
It is worth emphasizing that this transformation is effective to
enhance the difference between watermarks and noises when
we model the detection sensitivity constraint. We progressively
generated three typical attack vectors to test whether the
E{𝑔𝑛𝑒𝑤 [𝑘]} is above the envelope line 𝜎−1

𝜃
𝐸 (𝜇).

• Ordinary attackers directly inject expected malicious sig-
nals, although the noise characteristics of threats are far
different from the original data. They generate signals
without noise in this case.

• Imitated attackers construct an attack vector by imitating
the statistical noise features of original signals, in order to
bypass the manual inspection.

• Replay attackers record a segment of the original sensor
measurements and replace the current sensor signal at a
scheduled moment, in order to bypass the advanced IDS.

As Fig. 12 illustrates, it is obvious that all three attacks
are captured by the red area above 𝐸 (𝜇). Furthermore, other
different shapes of attack vectors will also fall into the red
area. This justifies the transformation of the detection sensitivity
constraint.

For this liquid level data series, the numerical solver first
attempts to choose a feasible watermark strength range within
the constraints of detection sensitivity and signal quality. It
calculates the original noise variance as 𝜎2

𝑛 = 2.26 and the
mean liquid level of the current conditions 533mm. Since
the innovative sequence Θ is created with 𝑚 = 4, 𝑅(𝜇) and
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Fig. 12. The lower bound of E{𝑔𝑛𝑒𝑤 [𝑘 ] |𝐴} when 𝜇 varies.

SNWR(𝜇) are drawn in Fig. 13. We input the lower bounds
𝑟𝑙 = 3 as well as the minimum SNWR 𝜂 = 150, and the feasible
range [𝜇𝑙 , 𝜇ℎ] is [4.90, 7.90]. In addition, under some strict
constraints, we cannot find a suitable range of 𝜇 and we do
not suggest using the watermarking technique to protect data
integrity because it is conflicting that the chosen watermarks
have a good performance.
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Fig. 13. Numerical results of 𝑅 (𝜇) and SNWR(𝜇) .

The next step considers the detector-side constraints and
finally retrieves the optimal pair (𝜇∗,𝑊). As we have mentioned
that Ψ(𝜇,𝑊) dose not have the explicit expression, we draw a
heat map Fig. 14 to reveal the relationship between the dependent
variable and pairs (𝜇,𝑊). The numerical searching is conducted
on the map. The minimum detection time delay is𝑚/ 𝑓𝑠 = 0.08𝑠,
if we set 𝑇𝑠𝑒𝑡 = 2𝑠, the upper bound of the STW length
is 25. We can search an (𝜇∗,𝑊) in the region that satisfies
𝜇 ∈ [4.90, 7.90], 𝑊 ⩽ 25 and Ψ(𝜇,𝑊) ⩾ 0. The optimal
(𝜇∗,𝑊) is determined as (5.8, 20).

We verify the effectiveness of the designed watermark
strategy under the three types of attacks mentioned above. The
results are shown in Fig. 18. The ordinary attacker mimics liquid
level dropping without noises, the malicious data is a segment of
the ramp function. The imitated attacker tries to change the stable
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Fig. 14. The Ψ(𝜇,𝑊 ) heat map.

measurement to a periodic signal with similar characteristics to
the disturbance. Both the two attacks are launched at 𝑡 = 75s. The
replay attacker just retained the characteristics of the original
sensor measurement, it started sending the recorded signal at
different level heights at 𝑡 = 75s and ends at 𝑡 = 160s. The
attack response activating function 𝐷 [𝑘] caught all three types
of threats with clear start and end times.
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Fig. 15. Control performance before and after watermarking in EDS.

We applied our detection system to the EDS to protect the
liquid level data. The programmable logic controller (PLC) is
running a proportional-integral (PI) control algorithm where
the coefficients for the proportional term is 1 and the integration
time is 100𝑠. The controller keeps the liquid level at about
200mm with a specified triangular wave. The optimal watermark
strength 𝜇 = 3.1mm. Fig. 15 shows that the watermarked data
does not affect the performance of the controller in practical
applications while still ensuring the sensor data’s integrity.

B. Comparison with Other Approaches
We compare the performance of the proposed method with

that of RWM on the dataset collected by three different
sensors in our platform. What we investigate includes signal
quality SNWR(𝜇) and detection time delay 𝑇 (𝑊). We assume
that the two techniques have similar positive detection rates
provided that the upper bound of Ḡ and the lower bound of G
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TABLE I
Parameters of two methods

Methods Sensor 1 Sensor 2 Sensor 3

RWM (7.20, 50) (0.40, 50) (8.40, 50)

Our strategy (5.10, 20) (0.24, 10) (5.80, 20)

distribution are clearly discriminated. The mean and variance
(𝑒, 𝜎2

𝑛) of the three dataset are (533.94, 2.26), (2.55, 0.005),
and (666.17, 3.63). The sizes of the block that we get from the
first process are 5, 10, and 5. Pairs (𝜇,𝑊) are illustrated in Table
I, and the STW length of RWM is always 50 according to the
previous research.

First, we demonstrate the decrease rate of SNWR(𝜇) values
under the conditions of no watermarking, using the proposed
watermark-based method, and the conventional RWM. Although
both our method and RWM have a nontrivial impact on the
original signal, which is the necessary cost spent on protecting
signal integrity, our method has better signal quality with the
same detection performance Ψ(𝜇,𝑊) = 0. The result in Fig.
16 is normalized and we can find our method adds fewer
fluctuations to data, as we use a smaller watermark strength
𝜇 to achieve similar detection results.

Sensor1 Sensor2 Sensor3
0

0.2

0.4

0.6

0.8

1

1.2 No watermarking Our method RWM

Fig. 16. The SNWRs among three sensors.

Second, the detection latency will be longer than those of the
RWM in Fig. 17, but they can be controlled below the maximum
detection latency requirement 2𝑠 as we have already modeled it
in our optimization problem. In other words, our method reduces
some measurement disruptions by tolerating such acceptable
intrusion response delays.
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Fig. 17. The time delay among three sensors.

We qualitatively compare our watermark-based detection sys-
tem with the traditional IDSs and some prevention mechanisms
in three dimensions, where the former is generally based on
machine learning or feature matching methods and the latter
contains access control techniques, encryption algorithms, etc.

Prior knowledge of the process: Traditional IDSs require
a large amount of abundant normal and anomalous operation

data fed into well-designed models to obtain high accuracy,
which means both learning-based and model-based IDSs need
to have more system prior knowledge. System designers should
pay more attention to feature engineering. Our watermark-
based detection system is quite like some lightweight encryption
algorithms that only focus on the pure data transferred in real-
time channels, only involving data types, ranges, and other
simple characteristics. Hence, our system can be easily migrated
to other ICSs.

Computational and storage overhead: Most IDS solutions
leverage large open-source datasets [46] or collect and use high-
performance computers or servers with multiple GPUs to train
models for several hours [47], which is a time-consuming task
and needs sufficient computing resources. The use of firewalls or
data encryption methods also affects the real-time performance
of ICSs. However, our system can be directly deployed to IIoT
devices with a 17KB total code size. The algorithm for adding
watermarks has a low computational complexity which does
not need to be removed when used for process control, it can
search feasible parameters offline in seconds and operate online
in microseconds.

Security policies: The watermark-based data integrity detec-
tion system ensures that sensor data remains consistent and trust-
worthy throughout its lifecycle, from transmitter to receiver. The
watermarked signals are still directly available for the control
output calculation. Unlike encryption techniques, watermarking
does not ensure data confidentiality, and an attacker can still
obtain legitimate information by the watermarked signal.

V. Conclusion and Future Works
The system uncertainty, latency, and other control objectives

are difficult to model when using the watermark-based detection
approach on a real-world ICS. We proposed an enhanced
watermark-based detection method for practical applications.
The detection performance was summarized as several mathe-
matical expressions in a realistic way, and the formulated opti-
mization problem determined the optimal watermark strength.
The expansions of watermark-addition and intrusion response
algorithms could significantly reduce the effect of realistic
noises on detection performance. The experimental results
based on the realistic platform validated the effectiveness and
superiority of our method. In the future, we will develop more
specific constraints to describe the realistic requirements of
the detection/control performance or signal channels. We will
also try to introduce the inherent dynamics of the controlled
objects into the construction of watermarks that are much more
difficult to be inferred, which can protect multiple control loops
simultaneously.

Appendix A
Proof of Theorem 2

The 𝑒𝑤 can be rewritten as the composition of hash functions
with different inputs like timestamps and watermarked signals

𝑒𝑤 [𝑘] = 𝑤 [𝑘] − 2𝑤 [𝑘 − 1] + 𝑤 [𝑘 − 2]
= ℎ𝑛 (𝑘) − 2ℎ𝑛 (𝑘 − 1) + ℎ𝑛 (𝑘 − 2) + ℎ𝑟 (𝑠𝑤 [𝑘 − 1])
− 2ℎ𝑟 (𝑠𝑤 [𝑘 − 2]) + ℎ𝑟 (𝑠𝑤 [𝑘 − 3]).
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(b) Imitated attack
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Fig. 18. Effectiveness of the strategy for different types of attacks.

The calculations of ℎ𝑛 (𝑘), ℎ𝑛 (𝑘−1), ℎ𝑛 (𝑘−2), ℎ𝑟 (𝑠𝑤 [𝑘−1]),
ℎ𝑟 (𝑠𝑤 [𝑘 − 2]), and ℎ𝑟 (𝑠𝑤 [𝑘 − 2]) in every round are indepen-
dent. The corresponding random variables are defined as 𝐻1,
𝐻2, 𝐻3, 𝐻4, 𝐻5, and 𝐻6, which all identically follow uniform
distributionsU(−𝜇/2, 𝜇/2). We have

𝐻𝑖 × 𝐻 𝑗 = 0, if 𝑖 ≠ 𝑗 .

The E{𝑒𝑤2} represents as

E{𝑒𝑤2} = E{𝐻1
2 + 4𝐻2

2 + 𝐻3
2 + 𝐻4

2 + 4𝐻5
2 + 𝐻6

2}
= 12E{𝐻2},

where 𝐻 is a unified description of 𝐻𝑖 . Let 𝑋 =
𝐻+𝜇/2
𝜇

which
follows the distributionU(0, 1), we update E{𝐻2}:

E{𝐻2} = E{(𝜇𝑋 − 𝜇
2
)

2
}

= E{𝜇2𝑋2 − 𝜇2𝑋 + 𝜇
2

4
}

=
𝜇2

3
− 𝜇

2

2
+ 𝜇

2

4
=
𝜇2

12
,

where we have the property from [48]

E{𝑋 𝑘} = 1
𝑘 + 1

; 𝑘 = 1, 2, 3, · · ·.

The lower bound of E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴} is

E{𝑔𝑛𝑒𝑤 [𝑘] |𝐴} ⩾ 𝜎𝜃 −1𝜇2
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