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Abstract—Moving Target Defense (MTD) is a new technol-
ogy to defend against the false data injection attack (FDIA)
on distribution system state estimation (DSSE). It works by
proactively perturbing the branch reactance. However, due to the
challenges induced by the nonlinear dynamics and the coupling
phases in the three-phase AC DSSE model, the analysis on the
effectiveness and hiddenness of MTD, which are two essential
performance metrics, has not yet been conducted. In this paper,
we attempt to optimize the effectiveness and hiddenness of MTD
while considering voltage stability. Firstly, we quantify the two
metrics with approximated measurement residuals. Based on
the quantified metrics, we formulate an optimization problem
to maximize the effectiveness with guaranteed hiddenness and
ensure voltage stability by minimizing the voltage variation
induced by MTD. The original problem is transformed to a
polynomial optimization problem based on the observation that
the alteration of the projection matrix caused by reactance
perturbation is neglectable, such that the near-optimal result
can be obtained. Finally, extensive simulations are conducted on
the IEEE 13-bus test feeder to evaluate the performance of the
proposed MTD.

Index Terms—False data injection attack, unbalanced and
multiphase distribution system, hidden moving target defense,
reactance perturbation

I. INTRODUCTION

With the popularity of information and communications
technology (ICT) in power distribution systems (PDSs), it is
promising for the control center to achieve real-time monitor-
ing and control of system states such that the efficiency, safety,
and reliability would be significantly enhanced [1]. Neverthe-
less, the wide adoption of ICT also exposes PDSs to the threat
of cyberattacks [2]. In 2015, the Ukrainian electricity distri-
bution companies suffered a well-planned cyberattack, which
firstly switched substations off and then disabled information
technology infrastructure components, causing approximately
225,000 customers across various areas to lose power for a
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period from 1 to 6 hours [3]. In 2019, the government of
Venezuela repeatedly claimed that the widespread outage of
power was caused by a series of coordinated cyberattacks [4],
affecting the electricity sectors in Venezuela in most of its
23 states. Thus, it is important to model the cyberattack and
design defend strategies to ensure the cybersecurity of PDSs.

The false data injection attack (FDIA) has been recognized
as one of the most threating issues in PDSs [5]. It can bypass
the bad data detection (BDD) and mislead the distribution
system state estimation (DSSE) with an arbitrary bias, once
the attacker has certain knowledge of PDSs [6]. Recently,
the technology of moving target defense (MTD), which is
originated from the field of computer science and seeks to
enhance the security and resilience of an application through
increasing the diversity of software and network paths, has
been shown to have the potential of thwarting FDIAs in
PDSs [7], [8]. The philosophy behind MTD is to proactively
perturb branch reactances such that the previously inferred
branch parameters by the attacker are outdated, with which
the constructed FDIA may be detected by BDD. The MTD
can be implemented through the real-world device, named
as SmartValve, which has been widely deployed in existing
power systems to realize the active control of power flow,
by receiving real-time commands from the control center
based on encrypted secure channels [9]. Generally, the two
essential metrics to evaluate the performance of MTD are the
effectiveness in terms of attack detection and the hiddenness
to cheat attackers [10], [11]. If the attacker can perceive
the existence of MTD, then she/he would not rashly launch
FDIAs, which could invalidate the effectiveness of MTD.
Hence, the two metrics are closely related and indispensable.

Numerous studies have been devoted to the design of MTD
in both PDSs and power transmission systems (PTSs). In
PDSs, Cui et al. [7] designed a deeply hidden MTD to
elaborately hide both the self and mutual reactance of each
phase at the transmission line in unbalanced PDSs, while the
joint optimization of effectiveness and hiddenness has not been
investigated. Liu et al. [8] introduced a hidden MTD by mini-
mizing the system loss and line power flow differences before
and after MTD, yet only the balanced and symmetrical PDSs
are considered. In PTSs, the original three-phase AC TSSE
model can be simplified to the single-phase DC (linear) TSSE
model, given the symmetrical branch parameters between
phases and the negligible branch resistance. In the single-phase
DC TSSE model, the effectiveness of MTD is measured via the



rank of the composite matrix, which comprises the Jacobian
matrices before and after MTD. Higher rank typically means
stronger effectiveness. While the hiddenness is maintained
by keeping the power flows before and after MTD invariant,
which can be achieved by solving a set of linear equations. In
terms of effectiveness, Zhang et al. [10] thoroughly explored
the necessary conditions for the composite matrix possessing
full column rank (i.e., complete effectiveness) and designed a
heuristic algorithm to maximize the rank of composite matrix.
Liu et al. [12] proposed the MTD under which the attack
detection and identification probability is maximized and the
system loss is minimized. As for the hiddenness of MTD,
Zhang et al. [11] proved that by protecting a basic set of
measurements, the hidden MTD with complete effectiveness
can be achieved regardless of the variation of power flow. Liu
et al. [13] derived a sufficient condition on the placement of
SmartValve devices for the enhanced hidden MTD.

Although the design of MTD has been comprehensively
investigated in the single-phase DC TSSE model, the de-
veloped methods are not applicable to the three-phase AC
DSSE model due to the following three limitations: 1) It is
difficult to use the rank of composite matrix for the analysis
of MTD effectiveness in the AC model as the linearized
Jacobian matrix cannot be decomposed as perfectly as that
in the DC model [10]; 2) Perturbing branch reactances only is
not enough to make the complex power flows invariant due to
the existence of branch resistances, charging susceptances, and
tap changer transformers [14], indicating that the hidden MTD
cannot be achieved by solving a set of linear equations; 3)
The coupling phases make the branch admittance matrix (i.e.,
the inverse of branch impedance matrix) under MTD implicit,
hence hindering the explicit analysis of linearized Jacobian
matrices. Therefore, it is of great importance to conduct
exhaustive analysis on the effectiveness and hiddenness for
a practical three-phase AC DSSE model. In this paper, we
attempt to quantify the effectiveness and hiddenness utilizing
measurement residuals and jointly optimize the two quantified
metrics considering voltage stability. The contributions are
listed as follows:

• We quantify the effectiveness and hiddenness with ap-
proximated measurement residuals, which are derived by
applying sensitivity analysis to the nonlinear SE prob-
lem. Here the implicit sensitivity of branch admittance
matrix to reactance, resulted from the coupling phases, is
represented as an explicit function of impedance matrix.

• Based on the quantified metrics, we formulate the op-
timization problem for MTD to jointly optimize the ef-
fectiveness and hiddenness considering voltage stability.
To obtain the near-optimal result, the original problem is
transformed to a polynomial optimization problem based
on the observation that the projection matrix is almost
invariant under reactance perturbation.

• Extensive simulations are conducted on the IEEE 13-bus
test feeder to evaluate the accuracy of the derived residual
approximations and the effectiveness and hiddenness of

the proposed MTD.
The remainder of this paper is organized as follows. Section

II introduces the three-phase and unbalanced PDS model, the
DSSE model, the BDD model, and the attack model. Section
III presents the MTD model and our problems of interest.
Section IV illustrates the derived residual approximations and
the designed MTD. Section V demonstrates the simulation
results and Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we introduce the modeling of PDS via the
bus admittance matrix (Y-Bus) [15], the nodal voltage based
DSSE [16], the BDD model, and the attack model. Throughout
this paper, we utilize (~·) ∈ C to denote complex variables,
(·) ∈ R to denote real variables, and (~·)∗ to denote conjugate
variables, respectively. Subscripts re and im signify the real and
image parts of complex variables, respectively. Moreover, | · |
denotes the element-by-element absolute value of a real vector
or matrix, and || · ||2 signifies the 2-norm of a real vector or
matrix. The terms of bus and node, and edge and branch are
used interchangeably.

A. Three-Phase and Unbalanced PDS Model

The PDS can be mathematically described by an undirected
graph (N , E), where N , {1, · · · , N} ∪ {S} denotes the
set of nodes and includes loads and shunt capacitors, and
E , {(n,m)} ⊆ N×N represents the set of edges comprising
transmission lines, step-voltage-regulators and transformers,
which are referred as series elements. Let ψnm denote the
set of available phases corresponding to edge (n,m). The set
of nodes neighboring to n is denoted by Nn = {j|(n, j) ∈ E}.
The model of edge (n,m) is defined as

~Inm = ~Y (n)
nm

~Vn − ~Y (m)
nm

~Vm,

~Imn = ~Y (m)
mn

~Vm − ~Y (n)
mn

~Vn

(1)

where ~Y
(n)
nm , ~Y

(m)
nm , ~Y

(m)
mn , and ~Y

(n)
mn are all 3 × 3 complex

matrices determined by the model of the series element, and
their rows and columns are set to zero for missing phases.
~Inm denotes the complex current flow of edge (n,m), and
~Vn represents the complex voltage of node n.

B. DSSE

The DSSE is crucial as it enables the control center to
achieve real-time monitoring of system states with meter mea-
surements. The measurements utilized in the DSSE typically
include real-time, pseudo, and virtual measurements [17]. In
particular, real-time voltage, current, and power measurements
are collected from phasor measurement units, intelligent elec-
tronic devices and advanced metering infrastructure systems.
Pseudo power injection measurements are generated at the
control center based on historical load consumption profile
to relieve the measurement paucity in the DSSE. Virtual
measurements are defined as the information provided by the
buses of zero injections, and thus are also treated as equality
constraints in the DSSE [18]. The DSSE is to determine the



system state with the acquired measurements, which comprises
the set of complex bus voltages in rectangular forms, i.e.,
x = [V T

N ,re,V
T
N ,im]T ∈ R6∗(N+1). Once x is fixed, then the

operating point of PDS can be uniquely determined.
In this paper, we focus on the overdetermined DSSE

problem, where the sufficient number of measurements can
be obtained to make the PDS observable. Specifically, the
obtained measurements comprise branch current flow ~Ibra (de-
rived from (1)), branch power plow ~Sbra, bus power injection
~Sbus, complex bus voltage ~Vbus, and bus voltage magnitude
Vbus,mag. Here the power measurements are elaborated as

~Snm = ~Vn ×
[
~Y (n)
nm

~Vn − ~Y (m)
nm

~Vm

]
, (n,m) ∈ E , (2)

~Sn = ~Vn ×
∑
j∈Nn

[
~Y

(n)
nj

~Vn − ~Y
(j)
nj

~Vj

]
, n ∈ N , (3)

and the voltage magnitude of node n ∈ N is
Vn,mag =

√
V 2
n,re + V 2

m,im, where the mathematical op-
erations are implemented by element. Let zcomp =

[~Ibra; ~Sbra; ~Sbus; ~Vbus;Vbus,mag], and then the real measurement
vector can be constructed as z = [zcomp,re; zcomp,im] ∈ Rm.
We note that subscripts bra and bus do not mean measuring all
branches and buses. The relations between z and x obey

z = h(x, b) + e, (4)

where h(·) denotes the measurement function vector con-
structed from (1)-(3), vector b ∈ Rl collects the parameters
of series elements (including transmission lines, step-voltage-
regulators, and transformers), and e represents measurement
noises following normal distributions with zero mean and
variances σ2

i , 1 ≤ i ≤ m. The estimated state x∗ that best
fits z is viewed as the solution of the following nonlinear
weighted least squares (NWLS) problem:

x∗ , argmin
x

J(x,z, b) =
[
z − h(x, b)

]T
W

[
z − h(x, b)

]
, (5)

where the diagonal matrix W weights the measurements
according to the reciprocals of noise variances, namely W =
diag([σ−2

1 , · · · , σ−2
m ])T. The iterative Gauss Newton method is

adopted to approach x∗. At flat-start, the real and image parts
of bus voltages are set to [1,−0.5,−0.5, 0,

√
3

2 ,−
√

3
2 ]Tp.u. For

the k-th iteration, (6) is calculated to compute the forward step
∆x(k), i.e.,

∆x(k) , (HT
x(k)WHx(k))−1HT

x(k)W
[
z − h(x(k))

]
, (6)

with which the system state is updated as x(k+1) = x(k) +
∆x(k). Here Hx , ∂h(x, b)/∂x denotes the Jacobian matrix.
The iteration is terminated until ||∆x(k)||∞ and |J(x(k+1))−
J(x(k))| are small enough [19].

C. BDD Model

Based on the DSSE, the residual-based BDD is employed
to perceive and filter out possible bad data in measurements
caused by link failures or malicious cyberattacks. The cal-
culation of residual is formally described by r , ||r||2 =
||z−h(x∗)||2. To tolerate the impact of measurement noises,
a predetermined threshold τ > 0 is given through a hypothesis

test with a significance level α. The measurements will be
regarded as tainted if r > τ . Otherwise, z will be viewed as
normal ones. Note that r > τ detects the bad data with the
false alarm probability α when all measurement noises follow
normal distributions.

D. Attack Model
In this paper, we consider that the attacker has the following

capabilities:
• The attacker can infer model knowledge (network topol-

ogy and branch parameters) of PDSs through topology
leaking attacks or subspace attacks [20], [21].

• The attacker can easily approximate system states xappr

based on power flow/injection measurements [5].
• The attacker can eavesdrop and tamper with measure-

ments through spoofed wireless signals, intruded shared
communications, or spoofed substation field devices [22].

To guarantee the stealthiness of FDIAs, the injected attack
vector should conform the underlying physical model and is
constructed as a , h(xappr + c) − h(xappr), where c ∈ Rn

denotes the state bias injected by the attacker.

III. MTD IN UNBALANCED AND MULTIPHASE PDSS

The basic principle behind MTD is to proactively perturb
branch reactances such that the well-designed FDIAs may be
exposed to BDD, which can be potentially achieved through
revolutionary power electronics based products, named as
SmartValve, designed by the Smart Wire Incorporation. Smart-
Valve is essentially a Static Synchronous Series Compensator
(SSSC), injecting a leading or lagging voltage in quadrature
with the line current and providing the functionality of a series
capacitor or series reactor, respectively [9]. Fig. 1 depicts
a three-phase transmission line equipped with SmartValve
devices, where the branch impedance ~Znm is perturbed by
a diagonal complex matrix j∆Xnm ∈ C3×3. The rows and
columns in ∆Xnm corresponding to missing phases are set to
zeros. Since the impedance of branch is actually not impacted,
the mutual impedance between phases in three-phase PDSs
cannot be perturbed by the SmartValve device. For clarity, we
utilize symbols with subscript MTD to denote quantities after
MTD, while those without MTD represent quantities before
MTD. Hence, the matrices involved in the edge model (n,m)
after MTD are

~Y
(n)
nm,MTD = ~Y

(m)
mn,MTD =

1

2
~Y s
nm + (~Znm + j∆Xnm)−1

~Y
(m)
nm,MTD = ~Y

(n)
mn,MTD = (~Znm + j∆Xnm)−1.

(7)

The above operations are limited to rows and columns
included in ψnm to make the branch impedance matrix in-
vertible. Depending on the number of installed SmartValve
devices, the reactance perturbation is bounded by

∆Xnm ≤ ∆Xnm ≤ ∆Xnm. (8)

Further, integrated with ICT, SmartValve devices can receive
real-time perturbation commands from the control center, and
the SHA-256 encryption algorithm is adopted to ensure the
integrity of communicated data [23].



Fig. 1. Three-phase transmission line equipped with SmartValve devices.

A. Effectiveness and Hiddenness of MTD
The effectiveness of MTD measures the capability in de-

tecting FDIAs, while the hiddenness describes the ability to
realizing concealment from attackers. A well-designed MTD
strategy should possess strong effectiveness and hiddenness
simultaneously, which requires a systematical method as non-
trivial trade-off exists between the two metrics according to
[14]. In this paper, we quantify the effectiveness and hidden-
ness of MTD in unbalanced and multiphase PDSs utilizing
measurement residuals, which are elaborated as follows.

1) Effectiveness: The effectiveness is directly related to the
residual under FDIAs, which is denoted by rsys, and larger rsys
typically means stronger effectiveness. The calculation of rsys
is detailed as follows. By solving the WLS problem (5) with
tainted measurements za , zMTD + a and branch parameters
after MTD, i.e., bMTD, the system operator obtains x∗sys, which
is applied to BDD and the residual is calculated as rsys ,
||rsys||2 = ||za − h(x∗sys, bMTD)||2.

2) Hiddenness: Before launching FDIAs, the attacker will
implement a self-check process to evaluate the consistency
between the inferred model knowledge and obtained measure-
ments, which can be simply described by feeding z into BDD
and a residual ratt is computed. Only if ratt is small enough,
then the FDIA will be launched. Otherwise, the inferring
process will be restarted1. Hence, smaller ratt means stronger
hiddenness. The calculation of ratt is detailed as follows. With
normal measurements zMTD and outdated branch parameters
b, the attacker solves (5) and obtains x∗att, and the residual is
calculated as ratt , ||ratt||2 = ||zMTD − h(x∗att, b)||2.

B. Problems of Interest
The analysis of effectiveness and hiddenness is still chal-

lenging due to the implicit expressions of rsys and ratt. In this
paper, we derive analytical approximations of the two residuals
and then present a comprehensive MTD design method con-
sidering voltage stability in unbalanced and multiphase PDSs.
To simplify the analysis, we focus on the noiseless setting in
our main results and simulation results are demonstrated to
evaluate the impact of noises.

IV. MAIN RESULTS

In this section, we derive analytical residual approximations
of rsys and ratt based on sensitivity analysis, and present a

1The perturbation period should be designed smaller than the time required
for the inferring process to invalid the inferred branch parameters.

method to jointly optimize the effectiveness and hiddenness
of MTD with voltage stability being maintained.

A. Residual Approximation

We use sensitivity analysis [24] to investigate ”how” and
”how much” variations of measurements will impact the
estimated system state and the corresponding residual in (5).

Lemma 1: Let Φ∗ = (x∗, b) denotes the optimal point. when
J(Φ∗) approaches zero infinitely, then sensitivities ∂x

∂b and ∂r
∂z

can be calculated as

∂x

∂b
|Φ∗ , −

[
(H∗x)TH∗x

]−1
(H∗x)TH∗b , (9)

∂r

∂z
|Φ∗ , I −H∗x

[
(H∗x)TH∗x

]−1
(H∗x)T, (10)

where H∗x denotes the Jacobian matrix at point (x∗, b) and
H∗b = ∂h(x∗, b)/∂b. Here H∗x(:,ψbus) and H∗b (:,ψbra) are
simplified as H∗x and H∗b respectively, with ψN and ψE being
the sets of available bus and branch phases.

Proof: The proof is omitted due to the space limitation.

Remark 1: We use a small trick to handle the implicit sensi-
tivity of branch admittance matrix to reactance when calculat-
ing H∗b . That is, for branch admittance matrix ~Ynm ∈ C3×3,
its sensitivity to the self-reactance of phase A X

(1,1)
nm , i.e., the

imaginary part of the first diagonal element in ~Znm, can be
expressed as

∂~Ynm

∂X
(1,1)
nm

= −~Z−1
nm ×

∂ ~Znm

∂X
(1,1)
nm

× ~Z−1
nm, (11)

which makes the calculation of H∗b explicit.

1) Approximation of rsys: Intuitively, the effectiveness of
MTD is to make the constructed a inconsistent with the
current branch parameters bMTD, under which rsys is likely
to be enlarged. The inconsistency can be captured by the
following measurement error

∆zsys , zMTD + a− h(x∗MTD + c, bMTD)

≈ −h(x∗MTD + c, bMTD) + h(x∗MTD + c, b)+

h(x∗MTD, bMTD)− h(x∗MTD, b),

(12)

where the approximated system state xappr involved in a can
be very close to x∗MTD [5]. Further, the form of (12) can be
viewed as the increment of function h(x∗MTD, b)−h(x∗MTD +
c, b) caused by ∆b = bMTD − b and is approximated through
sensitivity as

∆zsys ≈ ∆zappr
sys , (HMTD*

b −HMTDc*
b )×∆b, (13)

where HMTD*
b = ∂h(x∗MTD, b)/∂b and HMTDc*

b = ∂h(x∗MTD +
c, b)/∂b. We define the point after MTD and FDIA as
Φ∗MTDa = (x∗MTD + c, bMTD), of which the residual rsys is
approximated based on (10), (12), and (13) as

rsys ≈ rappr
sys ,

∂r

∂z
|Φ∗

MTDa
×∆zappr

sys . (14)



2) Approximation of ratt: Similarly, from the perspective
of attackers, the inconsistency caused by MTD can be mea-
sured by the measurement alteration ∆zatt , zMTD − z =
h(x∗MTD, bMTD) − h(x∗, b), which is approximated through
sensitivity as

∆zatt ≈ ∆zappr
att , H∗x ×

∂x

∂b
|Φ∗ ×∆b+H∗b ×∆b

= P ∗x ×H∗b ×∆b, (15)

where P ∗x =
[
I − H∗x

[
(H∗x)TH∗x

]−1
(H∗x)T

]
and the state

deviation x∗MTD − x∗ is approximated utilizing (9). Finally,
based on (10) and (15), ratt is approximated at Φ∗ as

ratt ≈ rappr
att , ∆zappr

att , (16)

indicating that the approximated residual rappr
att (i.e., the reflec-

tion of hiddenness) is directly determined by ∆zappr
att .

B. Our Proposed MTD

In this subsection, we present the design of MTD, where
the effectiveness and hiddenness are jointly optimized and the
voltage stability is maintained. The corresponding optimiza-
tion problem is formally defined as

min
∆b
−
∣∣∣∣rappr

sys

∣∣∣∣2
2

+ ωatt
∣∣∣∣rappr

att

∣∣∣∣2
2

+ ωvolt
∣∣∣∣∂x
∂b
|Φ∗ ×∆b

∣∣∣∣2
2
,

(17)

s.t. ∆b ≤ ∆b ≤ ∆b,

where ωatt > 0, ωvolt > 0 denote the weight parameters, b and
b signify the lower and upper bounds for reactance perturba-
tion, and the last term in the objective function measures the
voltage deviation by ∆b.

The challenge of solving problem (17) lies in the first
term rappr

sys as it involves the matrix inverse operation[
(HMTD*

xMTDc
)THMTD*

xMTDc

]−1
, which is related to the decision vari-

able ∆b. Here HMTD*
xMTDc

= ∂h(x∗MTD +c, bMTD)/∂x. To address
the matrix inverse operation, (14) is rewritten as

rappr
sys =

(
I − PMTD*

xMTDc

)
×∆zappr

sys , (18)

where PMTD*
xMTDc

= HMTD*
xMTDc

[
(HMTD*

xMTDc
)THMTD*

xMTDc

]−1
(HMTD*

xMTDc
)T is

called the projection matrix as it orthogonally projects vectors
into the column space of matrix HMTD*

xMTDc
[25]. It is difficult to

directly eliminate the matrix inverse operation, but fortunately,
due to the small branch ratio X/R, we observe that matrix
PMTD*
xMTDc

is almost invariant under reactance perturbation. For
example, when ∆b

b = 0.2, the induced variation
∣∣∣∣P ∗x −

PMTD*
xMTDc

∣∣∣∣
2

= 0.0084 is trivial. Hence, (17) is reformulated as

min
∆b
−
∣∣∣∣(I − P *

x)×∆zappr
sys

∣∣∣∣2
2

+ ωatt
∣∣∣∣∆zappr

att

∣∣∣∣2
2
+

+ ωvolt
∣∣∣∣∂x
∂b
|Φ∗ ×∆b

∣∣∣∣2
2
, (19)

s.t. ∆b ≤ ∆b ≤ ∆b,

where x∗MTD involved in ∆zappr
sys is approximated as x∗ +

∂x
∂b |Φ∗×∆b. Problem (19) is a typical polynomial optimization
problem with order 4, which is basically NP-hard, and it is

difficult to directly find the global optimum. In this paper, we
use the fmincon function provided by Matlab to find a local
optimum from a given initial point, which is chosen as either
∆b or ∆b. It is noted that an alternative for solving (19) is
to approximate the original problem to a solvable one [26],
which is left as our future work.

Remark 2: The utilization of c in designing MTD reflects the
vulnerability factors of system states, and a larger absolute
value indicates that the state is more vulnerable to FDIAs.
For an attacker intending to cause voltage violation in the
feeder via irregular tap changes, she/he can reduce the end-
bus voltage in low-load period to cause overvoltage violation
or increase the end-bus voltage at heavy load period to cause
undervoltage violation [27]. Here the end-bus voltage is more
favored by attackers as it usually deviates a lot from the slack
bus and is difficult to be predicted by the control center due
to the integration of stochastic distributed energy resources.
Hence, the absolute values of elements in c are set to be
proportional to their distances away from the reference bus.

V. SIMULATIONS

We evaluate the performance of the proposed MTD on
the very unbalanced IEEE 13-bus test feeder [28]. In the
case study, the standard deviations of real-time measurements
are considered to be 1% and the pseudo measurements are
considered to have 20% standard deviations. The significance
level used in BDD is set to 0.05. The system topology and
measurements of 13-bus test feeder are depicted in Fig. 2,
where the buses 671 and 692, connected via the closed switch,
are combined to bus 671 for simplification. When solving the
optimization problem (19), the weight parameters are chosen
as ωatt = 1 and ωvolt = 100, and all elements of c belong to
[0.09, 0.1] and are chosen according to the distances of their
corresponding buses away from the slack bus. The perturbation
ratios ∆b/b are assumed to be bounded by 20%.

Fig. 2. The system topology and measurements of IEEE 13-bus test feeder.

A. Residual Approximation Accuracy

The subsection validates the accuracy of the derived residual
approximations through numerical results. In each scenario,



26 branches in the test case are perturbed separately with
the perturbation ratio ranging from 2% to 20% (10 steps),
where residuals ratt and rappr

att are calculated. rsys and rappr
sys

are computed by further introducing the FDIA against one
bus covered by the perturbed branch. Here the injected bias
on the bus voltage is set to be 0.1 p.u. The results in the
noiseless setting are demonstrated in Fig. 3. The approximated
residuals rappr

att and rappr
sys are very close to their true values

when the perturbation ratio is small. The approximation error
increases with the perturbation ratio. Specifically, the average
and maximum relative approximation errors are

Mean(
|ratt − rappr

att |
ratt

) = 5.65e-4%,Mean(
|rsys − rappr

sys |
rsys

) = 0.35%

Max(
|ratt − rappr

att |
ratt

) = 2.01e-2%,Max(
|rsys − rappr

sys |
rsys

) = 8.52%.

Further, the details of residual approximation with real-time
measurement noises δi = 1% are shown in Fig. 4. The
approximation accuracy degrades significantly especially when
the residual is dominated by measurement noises, which is an
intuitive result as the residual approximations cannot predict
the impact of measurement nosies.

Fig. 3. The accuracy of approximated residuals in the noiseless setting.

Fig. 4. The accuracy of approximated residuals with δi = 1%.

B. Effectiveness and Hiddenness

This subsection evaluates the effectiveness and hiddenness
of the proposed MTD. Fig. 5 shows residuals ratt, rsys and
the voltage variation induced by MTD. Here we assume that
all branches are equipped with SmartValve devices and 100
attack scenarios are simulated, where FDIAs are generated
with each element of c sampled from the uniformly distribu-
tion U(−dm, dm). Here dm = 0.03 denotes the maximum
magnitude of the injected bias into state variables. It can be
observed that ratt is almost equal to r, indicating that the

attacker is hard to perceive the existence of MTD via ratt.
Moreover, under the FDIAs generated from U(−0.03, 0.03),
rsys can be significantly larger than r, and thus the probability
of detecting FDIAs will be enhanced. Moreover, the voltage
magnitudes and phases after MTD are both very close to
those without MTD, meaning that the proposed MTD can
maintain voltage stability. Specifically, the relative average
voltage magnitude and phase variations are

Mean(
||VMTD| − |V ||

|V |
) = 9.48e-3%,

Mean(
|θMTD − θ|

θ
) = 1.4e-2%.

Fig. 5. Residuals and voltage variations by the proposed MTD.

Since it is not practical to install SmartValve devices onto all
branches, we conduct simulations to evaluate the effectiveness
and hiddenness of MTD when only partial branches can be
perturbed. As shown in Fig. 6, the number of perturbed
branches ranges from 17 to 26. For each number of perturbed
branches, we randomly choose 100 sets of branches, and
FDIAs are constructed with c sampled from U(−0.03, 0.03).
Through Monte Carlo simulations, the attack detection prob-
ability (ADP) and MTD hidden probability (MHP) are es-
timated with Num. of detected attacks

1000 and Num. of being hidden
1000 . The

results indicate that the ADP increases with the number of
perturbed branches, and the MHP is always around 95%,
which means that ratt is dominated by measurement noises. In
addition, when the standard deviation of measurement noise is



improved, the ADP will degrade as a higher detection thresh-
old is required to tolerate the impact of noises. Moreover, it
should be noticed that the ADP is closely related to the set of
perturbed branches, and a good choose of branches contributes
to the improvement of ADP and the maintenance of voltage
stability, which is left as our future work.

Fig. 6. Attack detection probability and MTD hidden probability under the
proposed MTD.

VI. CONCLUSION

In this paper, we quantified the effectiveness of hiddenness
of MTD in unbalanced and multiphase PDSs with approx-
imated measurement residuals, and provided a systematic
design method for MTD to optimize the two metrics con-
sidering voltage stability. It was validated that the residual
approximation errors for hiddenness are neglectable, while
those for effectiveness were limited by 9% when the reactance
perturbation ratio was bounded by 20%, which is acceptable
for the design of MTD. Moreover, the proposed MTD was
shown to be completely hidden to the attacker with signifi-
cantly enhanced detectability against FDIAs, while the voltage
variation induced by MTD is neglectable. In future works, we
will analytically investigate the effectiveness and hiddenness
of MTD in unbalanced and multiphase PDSs and evaluate the
performance of the proposed MTD in more test feeders.
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