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Abstract—Under the transformation of electric grid towards
sustainability and decarbonization, a large number of distributed
energy resources including solar photovoltaic (PV) farms are
expected to penetrate the grid. As one of the critical state
infrastructures, the cybersecurity of PV systems has attracted
numerous attention especially with the standardization of grid
support services. Various data-driven and model-based intrusion
detection systems (IDSs) have emerged for the cybersecurity
issue of grid-tied PV systems, among which the stealthy data
integrity attacks (DIA) are rarely mentioned. In this paper,
we propose a generation scheme of stealthy DIAs, which can
bypass two recently proposed (almost state-of-the-art) data-
driven and model-based IDSs simultaneously. The attack stealth-
iness is guaranteed by compromising the sensor measurements
cooperatively conforming the physical dynamics of the grid-tied
PV system, and meanwhile the attack vector needs to change
with an imperceptible speed to avoid steep and observable
increase/decrease. Systematical HIL experiments are conducted
to verify the stealthiness of the designed stealthy DIA and
evaluate its attack impact on PCC voltages.

Index Terms—Stealthy Data Integrity Attack, Grid-tied Pho-
tovoltaic Systems, Intrusion Detection System

I. INTRODUCTION

The current electric grid is undergoing significant and rapid
transformation to a sustainable and decarbonized electric grid
[1]. The deployment of variable generation, primarily wind
and solar, is leading this transformation and is associated
with the move from the physics of large spinning generation
to power systems dominated by power electronics enabled
resources [2]. It is expected that the deployment of distributed
energy resources (DER) will be approximately 280 gigawatts
(GW) by 2025, where nearly half of DER in 2021 are solar
photovoltaic (PV) systems [3]. Owing to the rapid develop-
ment of power electronics converters and information com-
munication technologies, PV systems can generate software-
driven and digital-controlled output powers according to par-
ticipated grid support services like reactive power capability
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and voltage/power control [4], whose configuration parameters
can be remotely tuned by system operators. Several technical
reports from Sandia National Laboratories pointed out that
the cyber vulnerabilities in the DER dominated electric grid
come from a wide range of factors including communication
protocols, software updates and patches, supply chain, insider,
social engineering, etc [5]–[7]. Once the attacker intrudes
into the network of a PV system, the information compris-
ing the meter readings, monitoring/diagnostics data, control
loop commands/measurements/parameters, etc [8]. could be
manipulated to cause economical and operational losses to
the electric grid like voltage violation [9], line failure, and
blackout [10].

Although IEEE 1547 Std [4] has proposed trust and cryp-
tography features including data encryption, access authen-
tication, and key management for communication protocols
(Modbus, IEC 61850, DNP3, etc,) that are widely used in the
interconnection of DERs with associated area electric grid, it is
still possible for powerful adversaries to bypass the prevention
security strategies by exploiting zero-day vulnerabilities like
the Stuxnet accident [11]. It thereby has great importance
to deploy intrusion detection systems (IDSs) in PV systems,
namely the second defense line, which can perceive the exis-
tence of adversaries through either signature of known attacks
or observed host, network, and physical anomaly induced by
attacks [12]. In this paper, we focus on the physical-based IDS
that utilizes physical measurements such as point of common
voltage/current, output active/reactive power, etc. to determine
the anomaly caused by adversaries, which has attracted great
attention in the power and control societies. According to the
detection techniques, physical-based IDSs can be classified
into data-driven and model-based IDSs.

The data-driven IDS can adopt machine learning methods,
statistical patterns, and specifications to identify anomaly
data from normal behaviours. Li et al. proposed an adaptive
hierarchical cyberattack detection and localization for active
distribution systems with DERs using the electrical waveform,
where the multi-layer long short-term memory (MLSTM)
network is utilized to classify anomaly from normal behaviours
[13], [14]. Guo et al. presented a detection and diagnosis
framework for power electronics converter enabled PV farms
via single waveform sensor to distinguish between normal
conditions, open-circuit faults, and cyberattacks, where in-
novative frequency-domain magnitude-based and time-domain
mean current vector-based features are proposed and LSTM
and convolutional neural network are used for classification
[15]. Mustafa et al. proposed an attack detection mechanism



using a Kullback-Liebler (KL) divergence-based criterion for
each DER to detect any misbehavior on its neighboring DERs,
where the KL divergence is a non-negative measure of the
relative entropy between two probability distributions [16].
Beg et al. developed signal temporal logic detection of two
major types of cyberattacks, namely false data injection and
denial-of-service attacks in DC microgrids, where STL is a
formalism to monitor the output voltages and currents of
DC microgrids against the defined specifications, such as
operational bounds, over time [17].

The model-based IDS focuses on verifying the data anomaly
employing the physical dynamics involving the electric circuit
and controller. Zhang et al. presented a physics-data-based
detection method to detect a variety of cyber-attacks in PV
farms using the frequency-domain power electronics-enabled
harmonic state space (HSS) models, which requires less sensor
measurements compared to Kalman Filter-based methods and
can achieve comparable performance [18]. Gallon and Liu et
al. proposed a distributed detection scheme that can be di-
rectly applied to DC microgrids by synthesising a Luenberger
observer and a bank of unknowninput observers, realizing
improved detection performance that cannot be achieved by
either observer module [19]–[21]. Sahoo et al. proposed a
novel cooperative vulnerability factor detection framework
against false data injection attacks for each DER system,
where the factor is derived insipred from the consensus-based
secondary control algorithm and will be nontrivial only under
the presence of attacks [22].

One critical issue of the physical-based IDSs in the existing
literature is that the threat of powerful adversaries like the
state-sponsored actor is overlooked especially in the scenario
of PV systems. The recently proposed IDSs in [13], [18]
merely consider multiply- and add-based biases, while the
possibility for the adversary to design stealthy attack vectors
that conform to the physical dynamics and deviate the states
from normal ones slowly is ignored. Given the lesson learned
from the Stuxnet accident, the state-sponsored adversary can
not only exploit zero-day vulnerabilities but also steal, buy,
infer critical information including the system topology, elec-
trical parameters, control algorithm, and detection scheme.
Therefore, it has great importance to consider stealthy attacks
in the critical state infrastructure, namely the grid-tied PV
farm, which is becoming common as the global trend towards
decarbonization. To fill this gap, in this paper, we propose a
generation scheme of the stealthy data integrity attack (DIA)
that can bypass two typical data-driven [13] and model-based
[18] IDSs. The contributions are as follows:

• We design an automatic stealthy DIA generation scheme,
only requiring that the adversary can obtain local static
parameters like electrical and control related parameters;

• To bypass the model-based IDS, the sensor measurements
are compromised simultaneously conforming the physical
dynamics; To bypass the date-driven IDS, the injected
bias changes with an imperceptible speed avoiding steep
and observable increase/decrease.

• We conduct systematical experiments on a hardware-

in-the-loop (HIL) testbed to validate the stealthiness of
generated DIA vectors and evaluate their attack impacts
on grid-tied PV systems.

The remainder of this paper is as follows: Section II presents
the grid-tied PV system modeling, and Section III introduces
the model-based and data-driven IDSs. Section IV details the
design of the stealthy DIA and Section V demonstrates the
experimental results. Section VI concludes this paper and
provides possible defensive strategies in future works.

II. GRID-TIED PV SYSTEM MODELING

The block diagram of a grid-connected PV system is shown
in Fig. 1, which includes two main stages, i.e., the DC-DC and
DC-AC conversion stages. As for the DC-DC conversion stage,
the PV array output voltage Upv and current Ipv are interfaced
with the DC/DC control. The DC/DC controller employs
the Maximum Power Point Tracking (MPPT) algorithm to
extract the maximum power from the PV panels. The DC/DC
controller output duty cycle D is given as input to the DC/DC
converter that maintains the operating voltage at the maximum
power point. In the DC-AC conversion stage, the DC/AC
inverter is mainly responsible for changing the DC power the
first stage produces to AC power. As shown in Fig. 1, the
DC/AC controller consists of the voltage control loop, reactive
control loop and current control loop. The voltage control
loop maintains DC link voltage Udc and derives the optimal
inverter output current value in d frame I∗fd. The other optimal
value I∗fq is determined by the reactive control loop used to
generate the required reactive power. The current control loop
is designed to force the DC/AC inverter output current If to
track the reference set points I∗fd and I∗fq .
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Fig. 1: The block diagram of a grid-connected PV system.

Fig. 2 shows a detailed DC-AC conversion stage. The LCL
filter can be represented by:

˙Ifd =
[Ud − IfdRf − Ucd − (Ifd − Igd)Rc]

Lf
+ ωIfq

˙Ifq =
[Uq − IfqRf − Ucq − (Ifq − Igq)Rc]

Lf
− ωIfd

˙Ucd =
(Ifd − Igd)

Cf
+ ωUcq

˙Ucq =
(Ifq − Igq)

Cf
− ωUcd

˙Igd =
[Ucd + (Ifd − Igd)Rc − IgdRg − Ugd]

Lg
+ ωIcq

˙Igq =
[Ucq + (Ifq − Igq)Rc − IgqRg − Ugq]

Lg
− ωIcd

(1)



where Ifd,q is the inverter side current of LCL, Udq is the
inverter side voltage, Ucd,q is the LCL capacitor, Id,q is the
grid side current of LCL and Ugd,q is the grid side voltage;
ω is the system frequency; Rf ,Lf ,Rc,Cf ,Rg and Lg are LCL
filter parameters. Let γd,q denotes the state of the inner current
control loop, which can be expressed as:{

γ̇d = I∗fd − Ifd

γ̇q = I∗fq − Ifq
, (2)


U∗
id=Ucd+kp(I

∗
fd−Ifd)+ki

∫
(I∗fd−Ifd)−ωLf ifq

U∗
iq=Ucq+kp(I

∗
fq−Ifq)+ki

∫
(I∗fq−Ifq)+ωLf ifd

. (3)

Assuming U∗
id,q = Uid,q , the model of PV converter and

current control loop can be written as{
ẋ = Ax +Bu
y = Cx

, (4)

where

A =



0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
ki
Lf

0 −Rf+kp+Rc

Lf
0 0 0 Rc

Lf
0

0 ki
Lf

0 −Rf+kp+Rc

Lf
0 0 0 Rc

Lf

0 0 1
Cf

0 0 ω − 1
Cf

0

0 0 0 1
Cf

0 0 ω − 1
Cf

0 0 Rc
Lg

0 1
Lg

0 −Rg+Rc

Lg
ω

0 0 0 Rc
Lg

0 1
Lg

−ω −Rg+Rc

Lg


,

B =


1 0

kp

Lf
0 0 0 0 0

0 1 0
kp

Lf
0 0 0 0

0 0 0 0 0 0 − 1
Lg

0

0 0 0 0 0 0 0 − 1
Lg


T

,

x = [γd, γq, Ifd, Ifq, Ucd, Ucq, Igd, Igq]
T is the state of system,

u = [I∗fd, I
∗
fd, Ugd, Ugq]

T is the control input, y is the output
vector, C is the output matrix, and kp and ki are the PI
controller parameters.
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Fig. 2: The DC-AC conversion stage.

III. MODEL-BASED AND DATA-DRIVEN IDSS

A. Model-based IDS

In the system model described in eq. (4), the signal x, u
and y are represented by x(t), u(t) and y(t), respectively.
With the HSS modeling, these time domain signals can be
transformed to the frequency domain using the fast Fourier
transform (FFT). Then the exponentially modulated periodic
(EMP) signal as the kernel function (e−st) is used to describe
the dynamic performance in the time and frequency domains.
Finally, the HSS equation can be expressed as


(s+ jmω)Xn =

∞∑
n=−∞

An−mXm +

∞∑
n=−∞

Bn−mUm

Yn =

∞∑
n=−∞

Cn−mXm

, (5)

which is equivalent to{
sX = (AT −N)X +BT U
Y = CT X

, (6)

where

X = [· · · , X−2, X−1, X0, X1, X2, · · · ]T ,
U = [· · · , U−2, U−1, U0, U1, U2, · · · ]T ,
Y = [· · · , Y−2, Y−1, Y0, Y1, Y2, · · · ]T ,
N = blockdiag(· · · ,−j2ωI,−jωI,0, jωI, j2ωI, · · · ).

Here, X, U and Y are harmonics vectors. The harmonics
vector is the Fourier coefficients, and the vector element
subscript denotes the harmonic order. AT , BT and CT are
the Toeplitz matrix. Since A, B and C are constants in the
PV system model descried in Eq. (4), AT = blockdiag(A),
BT = blockdiag(B) and CT = blockdiag(C). Thus, the
harmonic transfer function is

HT = CT (sI +N −AT )
−1BT , (7)

The HSS transfer function (HSS-TF)-based detector is a
residual-based detection algorithm consisting of a voltage
control loop detector (VLD) and a current control loop detector
(CLD). As for VLD, the residual at time instant k is calculated
as

RUdc
(k) =

∑k
j=k−Nd+1 (|U∗

dc − Udc(j)|)
NdU∗

dc

, (8)

where U∗
dc is the DC-link voltage reference, Udc(j) is the

sensor measurement at time j and Nd is the window length.
The VLD detection result is

V LD(k) =

{
Abnormal, RUdc

(k) ≥ γu
Normal , RUdc

(k) < γu
, (9)

where γu is the predefined threshold. In CLD, at time instant
k, the residual can be expressed as

RIgd(k) =

∑k
j=k−Nd+1

(∣∣yIgdest(j)− yIgd(j)
∣∣)

Nd|yIgdest(k)|
, (10)



where yIgdest is the estimate of Igd obtained by the harmonic
transfer function HT and yIgd is the measurement data. The
detection result about Igd is

CLDd(k) =

{
Abnormal, RIgd(k) ≥ γi
Normal , RIgd(k) < γi

. (11)

Here, γi is the predefined threshold. The detection result about
Igq can be similarly calculated.

B. Data-driven IDS

The MLSTM-based detector aims to detect cyberattacks
using the PCC node’s time series 3-phase voltage and current
measurements. LSTM belongs to the gate-controlled recurrent
neural networks that show excellent ability in dealing with
time series data. MLSTM is a stacked LSTM architecture
consisting of multiple LSTM layers. The sequence input of the
LSTM layer below is the sequence output of the LSTM layer
above. MLSTM utilizes previous time series measurements
to model complex nonlinear temporal dependencies of the
system and predict the future measurements the system would
produce. Abnormal data can be detected by comparing the pre-
diction results with the sensor measurements. The MLSTM-
based detector result at time instant k can be expressed as

R(k) =

{
Abnormal, |G∗(M(k − 1))−m(k)|2 ≥ α
Normal , |G∗(M(k − 1))−m(k)|2 < α

(12)
where m(k) denotes the measurement vector at time instant k,
M(k− 1) denotes a set of measurement vectors from k−Nd

to k − 1 and G∗ is the trained MLSTM model.

IV. STEALTHY DIA MODEL

If an attacker gains knowledge of static parameters of the
PV model described in eq. (4), the HSS-TF-based and the
MLSTM-based detectors mentioned in Section III have a
shared vulnerability that allows the attacker to circumvent
them without being detected. The detectors assume that the
observed measurements will deviate from the estimates when
cyberattacks occur. However, when an attacker knows PV
model parameters, he/she can delicately design the stealthy
attack such that the above assumption is violated, thus in-
troducing disturbance to the PV system state without being
detected by the detectors.

The assumptions on the attacker’s capabilities in the pro-
posed stealthy DIA model are listed as follows:

• Assumption 1: The attacker knows the static parameters
of the model, i.e., the attacker can calculate the matrices
of A, B and C in eq. (4).

• Assumption 2: The attacker can manipulate a subset of
sensor measurements before the controllers access them.
Specifically, the attacker can tamper with Ifd, Ifq , Ucd,
Ucq , Igd and Igq , simultaneously.

The key to our attack design is that, by calculating the state
model parameters A, B, and C, the attacker can further obtain
the stable transfer function H = C(−A)−1B. By adding
an attack signal which is the linear combination of H , we

ensure that the attack signal cannot be detected by the transfer
function based detector.

Let z̃ denote the sequential observations that may be at-
tacked. At the time instant k, z̃ is:

z̃(k) = z(k) + zatt(k) (13)
z(k) = (y(k −Nd + 1), · · · ,y(k))

where Nd is the length of the sliding window, and zatt(k) is
a sequential malicious data. The zatt(k) is a zero matrix if no
attack is implemented.

To implement an attack, the attacker can choose any ar-
bitrary nonzero matrix as zatt(k). However, the attack ma-
trix should satisfy the following conditions to accomplish a
stealthy attack.

1) Firstly, the attack vectors, which are the column vectors
of zatt(k), should be linear combinations of the column
vectors of stable transfer function H , i.e., zatt(k) =
H · w(k) where w(k) is some constant matrix that is
a Nd duplicate of its column vector. We refer w(k) as
the attack weight matrix, and its column vectors as the
attack weight vector;

2) Secondly, since the detection criteria are based on the
fraction of residual and estimation, the attack vector
should increase the observation on Igd,q to decrease the
criterion;

3) Thirdly, the attack vector should change gradually to
ensure a steady transient process that could bypass
MLSTM based detector. The rapidity of change is irrel-
evant to whether the change happens in milliseconds or
seconds, and the gradual change means that the slope of
the attack vector should not exceed this system’s normal
range.

We specifically illustrate the characteristic of matrix w(k).
If w(k) lies between changes in the attack signal, each
column vector of matrix w(k) is the same. Suppose w(k)
contains the instant that the attack signal changes, we can
still approximately consider that the matrix w(k) has the same
column vectors since the attack signal changes slowly and
gradually. Therefore, we deem each column vector of w(k)
the same in the following derivation.

To begin with, we prove that the proposed method could
bypass the CLD detector. At time instant k, the attacked
observation sequence would be: z̃(k) = z(k) + zatt(k) =
z(k) + Hw(k), where H is the stable transfer function
and Hw(k) is the attack matrix. Since in stable condition,
y(k) = Hu(k), the effect of adding the proposed attack signal
is equivalent to adding an attack weight matrix on the control
input as

ũ(k) = u(k) + uatt(k) = u(k) + w(k). (14)

The CLD-detector would use the Fourier coefficient of ũ(k)
and harmonic transfer function HT to calculate the Fourier
coefficient of the following estimated observation:

ũ(k) = F(ũ(k)) = F(u(k) + w(k)), (15)



Ỹ(k) = HT ũ(k) = HTF(u(k) + w(k))

= HTF(u(k)) +HTF(w(k))
. (16)

Note that the second term is the effect of the attack signal.
The detector then uses inverse Fourier transform to obtain the
estimated signal of observation as:

yest(k) = F−1(Ỹ(k)) = F−1(HTF(u(k)) +HTF(w(k)))

= F−1(HTF(u(k))) + F−1(HTF(w(k)))
(17)

According to the first condition of the attack matrix, the
attack weight matrix w(k) is a matrix that all its column
vectors are the same. Thus its Fourier coefficients are all
zero except the zero frequency element and mathematically
is F(w(k)) = [· · · ,0,0,W0,0,0, · · · ]. Recall that the har-
monic transfer function HT is a block diagonal matrix where
the central element, which corresponds to the zero frequency
element, is the stable transfer function H . Thus we have:

yest(k) = F−1(HTF(u(k))) + F−1(HTF(w(k)))

= F−1(HTF(u(k))) + F−1(HW0)

= F−1(HTF(u(k))) +Hw(k)

(18)

Note that the first term is the normal estimation and the second
term is the consequence of attack signal. Thus the consequence
of attack signal on the observation Ỹ(k) is the same with the
estimated observation vector yest(k). In this way, we prove
that the numerator in the residual calculated by CLD would not
be increased due to our attack. Furthermore, the increased Igd,q
ensures that the denominator would not get smaller. Therefore,
the detection criterion RIgd,q (k) would not increase during our
attack.

As for the VLD, since the voltage control loop ensures that
the Udc is close to U∗

dc, as long as the attack vector change
slowly enough, the amplitude of the transient process would
be omittable and would not be detected by the VLD. The
same reason also applies to the MLSTM-based detector. Since
it relies on the abrupt change in the observation, gradually
changing the attack vector ensures that the process is smooth
and decent, thus eliminating the possibility of being detected
by the MLSTM-based detector.

We want to highlight that the key to designing attack
matrices lies in the linear combination of column vectors of
the stable transfer function Hw(k). Only in this condition can
we connect the effect of adding attack vector zatt(k) to the
observation and the effect of adding attack vector uatt(k) to
the control input and prove that our DIA could bypass the
CLD.

V. SIMULATION AND EXPERIMENT RESULTS

In this section, we demonstrate the stealthiness of the
designed DIA and its impact on point of common coupling
(PCC) voltages through HIL experiments. We conduct the
HIL experiments in a real-time Typhoon HIL testbed [23]. As
shown in Fig. 3, the IEEE 34-node distribution grid connecting
a power electronic converter-enabled PV farm is built in HIL
602+ emulator, and the PC is connected to the emulator to
achieve supervisory control and data acquisition.

A HIL Emulator-based Cybersecurity 

Testbed for PV Farms

USB/Ethernet

IEEE 34-node distribution 

grid connecting a PV farm

(HIL 602+ emulator)
Supervisory control and data acquisition

(PC)

Fig. 3: Overview of the HIL-based grid-tied PV farm.

A. Datasets

To obtain the HSS-TF-based and MLSTM-based detectors,
we design several types of normal cases by defining different
environmental conditions. The irradiation on the PV panel
varies in the range of 800, 900 and 1000w/m2. The temper-
ature varies within the range of 15, 25 and 35°C. Besides
the conditions with constant irradiance and temperature, our
experiments also consider gradual irradiance change and tem-
perature change. For each scenario, 10s data are captured, and
the sampling frequency is chosen as 1.3 kHz.

We conduct stealthy attacks under 900w/m2 irradiation
and 25°C. The attack lasts for 40s. In the first 20s, the
attack weight vector changes from [0.003, 0.0003, 0, 0]T to
[0.024, 0.0024, 0, 0]T with eaqual change every 0.25 seconds.
For the last 20 seconds, the attack weight vector would
change in the reverse direction and become [0.003, 0.003, 0, 0]
eventually.

B. The Attack Stealthiness

Under the designed stealthy attacks, the detection results of
the HSS-TF-based detector are shown in Fig. 4 and 5. Under
the designed stealthy attack, the detection results of the HSS-
TF-based detector are shown in Fig. 4 and 5. From Fig. 4(a),
we can see that the detector’s prediction Igd by HSS-TF and
Igq by HSS-TF approximately equals to the real value during
the attack period. In Fig. 4(b), note that the residuals of the
Igd and Igq do not have obvious change from normal time
and the residuals are both lower than the detection threshold.
From Fig. 5(a), the oscillation of signal Udc during attack does
not have obvious change from normal time and would not be
detected. The VLD detection residuals are always within the
detection thresholds as shown in Fig. 4(b).

The detection results of the MLSTM-based detector under
the stealthy attacks are shown in Table I. With different
detection windows, the MLSTM-based detector all shows high
precision but low recall. Precision is the fraction of correctly
detected attacked instances among all the instances that labeled
as attacked by the model, recall is the fraction of correctly
detected attacked instances among all the attacked instances,
and F1 score is a weighted average of precision and recall. The
detection results indicate that the stealthy attacks are almost
undetectable by the detector.

C. The Attack Impact Performance

We show the changes of the amplitude of PCC node voltage
during attack in Fig. 6. Note that the attack leads to the



(a)

(b)

Fig. 4: (a) compromised measurement versus estimation of
igd,q under steathly attacks; (b) residual of CLD under stealthy
attacks.

(a)

(b)

Fig. 5: (a) Udc under stealthy attacks; (b) residual of VLD
under steathly attacks.

Window Length Recall Precision F1
50 0.41% 96.83% 0.0082

100 0.39% 95.77% 0.0078
200 0.44% 96.17% 0.0087

TABLE I: The detection results of MLSTM-based Detector.

increase of PCC nodes’ voltages. Besides, at the maximum
amplitude of the attack weight vector, that is about 30 second
in the figure, the voltages of the PCC load would increase by
approximately 1V that exceeds the normal oscillation range of
PCC load voltages before attack.
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Fig. 6: The PCC voltage amplitudes under stealthy attack.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a generation scheme of stealthy
DIAs that can bypass model-based [18] and data-driven [13]
IDSs simultaneously in the scenario of PV farms. The model-
based IDS is invalidated by tampering with the sensor mea-
surements conforming to the physical dynamics, while the
data-driven IDS is bypassed by changing the waveform data
with an unobservable speed. Through HIL experiments, it is
demonstrated that the designed stealthy DIA can obviously
deviate PCC voltages from normal values without being per-
ceived by data-driven or model-based IDSs.

To defend against the potential stealthy DIA, one possible
direction is to utilize the idea of proactive detection, which
aims to enhance the detection capability of IDSs by adding
uncertainties to the adversary. Once the adversary cannot
obtain accurate model knowledge of the PV system, then the
designed stealthy DIA using outdated information is likely to
be uncovered by IDSs. In addition to this, the information
from multiple levels (device- and grid-levels) and domains
(host, network, and physical domains) can be further used to
improve the detection capability.
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